用python编程一个走迷宫游戏_Python基于递归算法实现的走迷宫问题

本文实例讲述了Python基于递归算法实现的走迷宫问题。分享给大家供大家参考,具体如下:

什么是递归?

简单地理解就是函数调用自身的过程就称之为递归。

什么时候用到递归?

如果一个问题可以表示为更小规模的迭代运算,就可以使用递归算法。

迷宫问题:一个由0或1构成的二维数组中,假设1是可以移动到的点,0是不能移动到的点,如何从数组中间一个值为1的点出发,每一只能朝上下左右四个方向移动一个单位,当移动到二维数组的边缘,即可得到问题的解,类似的问题都可以称为迷宫问题。

在python中可以使用list嵌套表示二维数组。假设一个6*6的迷宫,问题时从该数组坐标[3][3]出发,判断能不能成功的走出迷宫。

maze=[[1,0,0,1,0,1],

[1,1,1,0,1,0],

[0,0,1,0,1,0],

[0,1,1,1,0,0],

[0,0,0,1,0,0],

[1,0,0,0,0,0]]

针对这个迷宫问题,我们可以使用递归的思想很好的解决。对于数组中的一个点,该点的四个方向可以通过横纵坐标的加减轻松的表示,每当移动的一个可移动的点时候,整个问题又变为和初始状态一样的问题,继续搜索四个方向找可以移动的点,知道移动到数组的边缘。

所以我们可以这样编码:

# 判断坐标的有效性,如果超出数组边界或是不满足值为1的条件,说明该点无效返回False,否则返回True。

def valid(maze,x,y):

if (x>=0 and x=0 and y

return True

else:

return False

# 移步函数实现

def walk(maze,x,y):

# 如果位置是迷宫的出口,说明成功走出迷宫

if(x==0 and y==0):

print("successful!")

return True

# 递归主体实现

if valid(maze,x,y):

# print(x,y)

maze[x][y]=2 # 做标记,防止折回

# 针对四个方向依次试探,如果失败,撤销一步

if not walk(maze,x-1,y):

maze[x][y]=1

elif not walk(maze,x,y-1):

maze[x][y]=1

elif not walk(maze,x+1,y):

maze[x][y]=1

elif not walk(maze,x,y+1):

maze[x][y]=1

else:

return False # 无路可走说明,没有解

return True

walk(maze,3,3)

递归是个好东西呀!

PS:本站还有一个无限迷宫游戏,基于JS实现,提供给大家参考一下:

希望本文所述对大家Python程序设计有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值