pytorch tensorboard_Pytorch下的tensorboard可视化

Tensorboard

安装

原本是tensorflow的可视化工具,pytorch从1.2.0开始支持tensorboard。之前的版本也可以使用tensorboardX代替。

在使用1.2.0版本以上的PyTorch的情况下,一般来说,直接使用pip安装即可。

pip install tensorboard

这样直接安装之后,有可能打开的tensorboard网页是全白的,如果有这种问题,解决方法是卸载之后安装更低版本的tensorboard。

pip uninstall tensorboard
pip install tensorboard==2.0.2

Tensorboard的使用逻辑

Tensorboard的工作流程简单来说是

  • 将代码运行过程中的,某些你关心的数据保存在一个文件夹中:
这一步由代码中的writer完成
  • 再读取这个文件夹中的数据,用浏览器显示出来:
这一步通过在命令行运行tensorboard完成。

代码体中要做的事

首先导入tensorboard

from torch.utils.tensorboard import SummaryWriter

这里的SummaryWriter的作用就是,将数据以特定的格式存储到刚刚提到的那个文件夹中。

首先我们将其实例化

writer = SummaryWriter('./path/to/log')

这里传入的参数就是指向文件夹的路径,之后我们使用这个writer对象“拿出来”的任何数据都保存在这个路径之下。

这个对象包含多个方法,比如针对数值,我们可以调用

writer.add_scalar(tag, scalar_value, global_step=None, walltime=None)

这里的tag指定可视化时这个变量的名字,scalar_value是你要存的值,global_step可以理解为x轴坐标。

举一个简单的例子:

for epoch in range(100)
    mAP = eval(model)
    writer.add_scalar('mAP', mAP, epoch)

这样就会生成一个x轴跨度为100的折线图,y轴坐标代表着每一个epoch的mAP。这个折线图会保存在指定的路径下(但是现在还看不到)

同理,除了数值,我们可能还会想看到模型训练过程中的图像。

writer.add_image(tag, img_tensor, global_step=None, walltime=None, dataformats='CHW')
 writer.add_images(tag, img_tensor, global_step=None, walltime=None, dataformats='NCHW')

可视化

我们已经将关心的数据拿出来了,接下来我们只需要在命令行运行:

tensorboard --logdir=./path/to/the/folder --port 8123

然后打开浏览器,访问地址http://localhost:8123/即可。这里的8123只是随便一个例子,用其他的未被占用端口也没有任何问题,注意命令行的端口与浏览器访问的地址同步。

如果发现不显示数据,注意检查一下路径是否正确,命令行这里注意是

--logdir=./path/to/the/folder

而不是

--logdir= './path/to/the/folder '

另一点要注意的是tensorboard并不是实时显示(visdom是完全实时的),而是默认30秒刷新一次

远程连接服务器时使用tensorboard

具体做法是当你用xshell建立好连接后,点击下图红框中的属性按钮

v2-5557c07e4699ef697817764ccdadc75c_b.jpg

然后点击属性中的SSH下的隧道,得到如下界面

v2-56ee88e7c50a6bc34c755ec3dd2af8a7_b.jpg

点击添加:

v2-9d37dfaf5c7069aad61cbd0d19604645_b.jpg

将侦听端口改为16006(当然也可以是其他的,就是本机的端口),目标主机和源主机保持localhost不变,目标端口就是服务器上打开tensorboard对应的端口6006然后点击确定之后,就建立好了服务器端口16006与自己电脑端口6006的转发。然后按之前的步骤打开tensorboard,在本地浏览器中输入127.0.0.1:16006或者localhost:16006就可以访问到服务器上的tensorboard的信息了

详细教程见:

torch.utils.tensorboard - PyTorch master documentation​pytorch.org
v2-57bfda48ee75aa8426f17f31b41f8980_ipico.jpg
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值