circle loss代码实现_使用 TensorFlow2.0 实现线性回归

本文是笔者学习 TensorFlow2.0(下文都写作 TF2.0) 的一篇笔记,使用的教材是《动手深度学习》(TF2.0版)。

之所以可以使用 TensorFlow 来实现线性回归,是因为我们可以把线性回归看成是只有一层、一个神经元的全连接网络:

6f55b00196835786314c6c13ef8161db.png

上面这个图就是线性回归 w1x1 + w2x2 + b = y 的神经网络的表示。

实现线性回归

要实现线性回归,我们需要

  1. 定义线性回归模型
  2. 定义 Loss 函数
  3. 定义迭代优化算法

这些也是机器学习理论中的要点,我们可以借本文来回顾一下。

定义线性回归模型

要实现一个算法,我们首先需要用矢量表达式来表示它,即:使用向量、矩阵来描述一个模型。这样做的好处是:矢量批量计算要比循环一条条的计算每个样本来得快得多,线性回归的矢量表达式为:

34392de2b6317398deb372c916e60ff0.png

其中,X 是一个 nxd 维的矩阵,n 表示 n 条样本,d 表示特征的维数;w 是模型的参数,它是一个 dx1 维的向量;b 是偏差值,它是一个标量;y^ 是 n 条样本的预测值,它也是 nx1 的向量。

该模型用 TF2.0 实现如下:

import tensorflow as tfimport numpy as npimport randomdef linear_reg(X, w, b):  # matmul 是矩阵乘法  return tf.matmul(X, w) + b

定义 Loss 函数

一般的,回归模型的 Loss 函数为 MSE(Mean Squared Error):

348bc938fb8f60ca777fa510cce921f3.png

上式中,y 是样本的观测值(Observed Value),y^ 和 y 都是 nx1 的向量,n 表示对 n 个样本的 Loss 求平均,避免样本数量给 Loss 带来的影响。因为 Loss 是一个标量,所以上式还需要调整如下:

3b1526cc08f65dffff884e57ff846e69.png

Loss 用 TF2.0 实现如下:

def squared_loss(y, y_hat, n):  y_observed = tf.reshape(y, y_hat.shape)  return tf.matmul(tf.transpose(y_observed - y_hat),                    y_observed - y_hat) / 2 / n

定义迭代优化算法

深度学习大多采用小批量随机梯度下降优化算法(minibatch Stochastic Gradient Descent)来迭代模型的参数,该算法能节省内存空间,增加模型的迭代次数和加快模型的收敛速度。

SGD 算法每次会随机的从样本中选取一部分数据,例如每次取 100 条,然后计算这 100 条数据的 Loss,根据 Loss 求梯度,再用梯度来更新当前的参数,所以这里包含 3 个步骤:

  1. 随机选择样本,每次选 n 条
  2. 计算这 n 条样本的 Loss,并计算梯度,使用梯度更新参数
  3. 循环 1 和 2

先来看下随机选择样本的代码

def data_iter(features, labels, mini_batch):  '''  数据迭代函数  Args:  - features: 特征矩阵 nxd 维  - labels: 样本,nx1 维  - mini_batch: 每次抽取的样本数  Example:  >>> mini_batch = 100  >>> for X, y in data_iter(features, labels, mini_batch):  >>>   # do gradient descent  '''  features = np.array(features)  labels = np.array(labels)  indeces = list(range(len(features)))  random.shuffle(indeces)  for i in range(0, len(indeces), mini_batch):    j = np.array(indeces[i:min(i+mini_batch, len(features))])    yield features[j], labels[j]

接着,我们再来看下更新模型参数的代码:

def sgd(params, lr):  '''  计算梯度,并更新模型参数  Args:  - params: 模型参数,本例中为 [w, b]  - lr: 学习率 learning rate  '''  for param in params:    param.assign_sub(lr * t.gradient(l, param))

以上,关键代码就写完了,下面我们把它们们串起来:

# 产生模拟数据# 1000 条样本,2 维特征num_samples = 1000num_dim = 2# 真实的 weight, biasw_real = [2, -3.4]b_real = 4.2# 产生特征,符合正态分布,标准差为 1features = tf.random.normal((num_samples, num_dim), stddev=1)labels = features[:,0]*w_real[0] + features[:,1]*w_real[1] + b_real # 给 labels 加上噪声数据labels += tf.random.normal(labels.shape, stddev=0.01)# 学习率,迭代次数lr = 0.03num_epochs = 3# 初始化模型参数w = tf.Variable(tf.random.normal([num_dim, 1], stddev=0.01))b = tf.Variable(tf.zeros(1,))mini_batch = 10# 开始训练for i in range(num_epochs):    for X, y in data_iter(features, labels, mini_batch):            # 在内存中记录梯度过程        with tf.GradientTape(persistent=True) as t:            t.watch([w, b])            # 计算本次小批量的 loss            l = squared_loss(y, linear_reg(X, w, b), mini_batch)        # 计算梯度,更新参数        sgd([w, b], lr)    # 计算本次迭代的总误差    train_loss = squared_loss(labels, linear_reg(features, w, b), len(features))    print('epoch %d, loss %f' % (i + 1, tf.reduce_mean(train_loss)))

简单实现

上述代码是根据线性回归的原理一步步的实现的,步骤十分清晰,但比较繁琐,实际上,TF 提供了丰富的算法库供你调用,大大的提升了你的工作效率。下面我们就用 TF 库中提供的方法来替换上述代码。

我们先用 keras 来定义一个只有 1 层的全连接网络结构,这里参数都不需要你指定了:

from tensorflow import kerasfrom tensorflow.keras import layersfrom tensorflow import initializers as initmodel = keras.Sequential()model.add(layers.Dense(1, kernel_initializer=init.RandomNormal(stddev=0.01)))

接下来设置 Loss 函数为 MSE:

from tensorflow import lossesloss = losses.MeanSquaredError()

设置优化策略为 SGD:

from tensorflow.keras import optimizerstrainer = optimizers.SGD(learning_rate=0.03)

小批量随机获取数据集的代码如下:

from tensorflow import data as tfdatabatch_size = 10dataset = tfdata.Dataset.from_tensor_slices((features, labels))dataset = dataset.shuffle(len(features)).batch(batch_size)

可见,构建一个模型就是设置一些配置项,不需要写任何逻辑,把上面代码合起来,如下:

from tensorflow import data as tfdatafrom tensorflow import kerasfrom tensorflow.keras import layersfrom tensorflow import initializers as initfrom tensorflow import lossesfrom tensorflow.keras import optimizers# 设置网络结构:1 层全连接,初始化模型参数model = keras.Sequential()model.add(layers.Dense(1, kernel_initializer=init.RandomNormal(stddev=0.01)))# loss 函数:MSEloss = losses.MeanSquaredError()# 优化策略:随机梯度下降trainer = optimizers.SGD(learning_rate=0.03)# 设置数据集,和小批量的样本数batch_size = 10dataset = tfdata.Dataset.from_tensor_slices((features, labels))dataset = dataset.shuffle(len(features)).batch(batch_size)num_epochs = 3for epoch in range(1, num_epochs+1):    # 取小批量进行计算    for (batch, (X, y)) in enumerate(dataset):        with tf.GradientTape() as tape:            # 计算 loss            l = loss(model(X, training=True), y)        # 计算梯度并更新参数        grads = tape.gradient(l, model.trainable_variables)        trainer.apply_gradients(zip(grads, model.trainable_variables))        # 本次迭代后的总 loss    l = loss(model(features), labels)    print('epoch %d, loss: %f' % (epoch, l.numpy().mean()))# 输出模型参数print(model.get_weights())

上面代码直接拷贝便可通过运行(依赖库还需要你自行安装下),初学的同学可以动手试试。

小结

本文通过 TF2.0 来实现了一个简单的线性回归模型,具体包括

  1. 按照定义模型、定义损失函数,以及定义迭代算法这几个基本的步骤来实现一个广义的神经网络,麻雀虽小,但五脏俱全
  2. 使用丰富的 TF2.0 组件来实现一个更精简的版本,旨在了解 TF2.0 的使用。

参考:

  • 动手深度学习(TF2.0版)-线性回归从零开始实现
  • 《动手深度学习》
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值