傅里叶变换公式表_解读“傅里叶变换”公式最直观的原理

前面一篇文章说明了傅里叶变换形象直观的原理,根据所述的原理来得出他直观的变换公式:

注意需要结合前一篇文章来理解。:

前几篇文章已经说明欧拉公式代表着一种旋转运动,那肯定是复平面上进行,这样才能表现的更加具体。例如单位圆上

3b9d2f22c47c7b51255d67bd983f73f8.png

等于π是时,旋转180度后等于-1

9475d837f2f6fa959ad68153609bb1f8.png

当1圈/秒旋转时,那在任意t时刻旋转的路线就是2πt,因为一圈的周长是2π,在单位圆上表示出来任意时刻的位置就是e^(2πit)

8021041b571a33582b02ab9fb5f14b3b.png

如果我的旋转频率是f,那t时刻旋转的圈数就是tf,任意t时刻旋转的路线就是2πtf,在单位圆上表示出来任意时刻位置就是e^(2πift)

18cf0e2cd1c5d4c8cdc98aca9f332c9f.png

还记得前面所说箭头向量代表着任意时刻的振幅么,且是顺时针旋转,所以代表旋转的完整格式就是g(t)e^(-2πift),这个很好理解,它就是缠绕在圆上的花瓣的公式。如图

4859c7b921cdfcdfecba24b7771cce0b.png

因为g(t)e^(-2πift)只是代表任意时刻的位置,且每个频率下圆上缠绕的花瓣数量不同,所以每个频率下计算的振幅(质心)肯定是一圈的上的平均值,将圆上的花瓣分成无数等分,就得到如图所示的表示方式。

a559451db555fab7fa8d1185e9d695ab.png

分的越小(微元),值越精确,我们根据积分黎曼和原理:

711155b12fc30897ecbfa27b26188553.png

所以得到傅里叶变换的最终形式。

35cefeb6e31cb91455180725f5c81df3.png

最后再解释下,指数部分代表着旋转

23a1bda30889d03ac5e736ad927b81f4.png

指数函数乘以函数g(t)就代表着一个缠绕图像位置的描述

3ffee60c6c085f39264306d74deaa8b9.png

然后积分就代表在频域范围内对缠绕图形的更加精确的描述。

921e68420b032b1bb7f66e0a8497e7c4.png

如图时域到频域的的模型转换图:都包含在我们刚才建立的公式中

30839ac65793e61f8fc0d05751ca1cdf.png

以上就是对傅里叶变换公式的推导与原理描述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值