前面一篇文章说明了傅里叶变换形象直观的原理,根据所述的原理来得出他直观的变换公式:
注意需要结合前一篇文章来理解。:
前几篇文章已经说明欧拉公式代表着一种旋转运动,那肯定是复平面上进行,这样才能表现的更加具体。例如单位圆上
等于π是时,旋转180度后等于-1
当1圈/秒旋转时,那在任意t时刻旋转的路线就是2πt,因为一圈的周长是2π,在单位圆上表示出来任意时刻的位置就是e^(2πit)
如果我的旋转频率是f,那t时刻旋转的圈数就是tf,任意t时刻旋转的路线就是2πtf,在单位圆上表示出来任意时刻位置就是e^(2πift)
还记得前面所说箭头向量代表着任意时刻的振幅么,且是顺时针旋转,所以代表旋转的完整格式就是g(t)e^(-2πift),这个很好理解,它就是缠绕在圆上的花瓣的公式。如图
因为g(t)e^(-2πift)只是代表任意时刻的位置,且每个频率下圆上缠绕的花瓣数量不同,所以每个频率下计算的振幅(质心)肯定是一圈的上的平均值,将圆上的花瓣分成无数等分,就得到如图所示的表示方式。
分的越小(微元),值越精确,我们根据积分黎曼和原理:
所以得到傅里叶变换的最终形式。
最后再解释下,指数部分代表着旋转
指数函数乘以函数g(t)就代表着一个缠绕图像位置的描述
然后积分就代表在频域范围内对缠绕图形的更加精确的描述。
如图时域到频域的的模型转换图:都包含在我们刚才建立的公式中
以上就是对傅里叶变换公式的推导与原理描述。