python量化分析系列(第一篇)_量化工具系列之一----一步一步搭建量化回测框架

本文介绍如何使用zipline库搭建量化回测框架。通过一个均线策略示例,展示了策略思想和回测结果。文章探讨了自行搭建回测框架的原因,包括硬件限制、回测细节控制和策略安全。zipline-chinese版本被用于本地化数据加载和回测,文中详细解析了load_data函数,获取和处理股票历史数据。后续内容将逐步解析zipline回测流程和注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源:雪球App,作者: 量化小王子,(https://xueqiu.com/9842090891/120038584)

1686916146d7223d3fe0c13c.png!custom660.jpg

在国外大名鼎鼎的quantopian 体系下,有三大著名的用于量化分析的python包,分别是zipline包,用于支持各种回测,支持分钟和日线级别回测,是最常用的一种,优矿和聚矿据说也是基于此的;Alphales 包也是用于回测,但主要使用在初期的因子回测,用以更快速的计算因子的收益、因子的IC、换手情况和并画出不同分类的净值曲线图。Pyfolio个人用的不太多,主要是配合zipline主要用来分析因子风险。

做数量化研究,很多时候只要熟练掌握一门编程语言,能够自己的想法进行实现就可以。想法验证到后期,就需要把我们的想法结合历史数据跑一遍,进而来验证我们的想法是否可行。Zipline就是这样一个轮子,能够更快速方便的帮助我们实现我们的想法。

首先我们实现一个均线日线策略。持股池为[‘000001’,’000002’,’000004’,’000005’],回测时间为2017-08-01 -----2019-01-15。

策略思想是判断股票的收盘价和这三天的均价比值,如果收盘价高于三日均价*1.005买入300股,如果收盘价小于三日均值*0.995则卖出300股,反之不变。然后我们可以使用zipline包回测一下,可以得到如下的曲线:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值