来源:雪球App,作者: 量化小王子,(https://xueqiu.com/9842090891/120038584)
在国外大名鼎鼎的quantopian 体系下,有三大著名的用于量化分析的python包,分别是zipline包,用于支持各种回测,支持分钟和日线级别回测,是最常用的一种,优矿和聚矿据说也是基于此的;Alphales 包也是用于回测,但主要使用在初期的因子回测,用以更快速的计算因子的收益、因子的IC、换手情况和并画出不同分类的净值曲线图。Pyfolio个人用的不太多,主要是配合zipline主要用来分析因子风险。
做数量化研究,很多时候只要熟练掌握一门编程语言,能够自己的想法进行实现就可以。想法验证到后期,就需要把我们的想法结合历史数据跑一遍,进而来验证我们的想法是否可行。Zipline就是这样一个轮子,能够更快速方便的帮助我们实现我们的想法。
首先我们实现一个均线日线策略。持股池为[‘000001’,’000002’,’000004’,’000005’],回测时间为2017-08-01 -----2019-01-15。
策略思想是判断股票的收盘价和这三天的均价比值,如果收盘价高于三日均价*1.005买入300股,如果收盘价小于三日均值*0.995则卖出300股,反之不变。然后我们可以使用zipline包回测一下,可以得到如下的曲线: