《义务教育数学课程标准》(2011年版)中明确指出:考试的内容涉及 “图形与几何”。《考试要求》中也提到要关注“模型思想”、“几何直观”等数学素养,并提出数学考试着重考查“发现问题、提出问题、分析问题、解决问题的能力”。
三角形是最简单的多边形,也是认识其他图形的基础。理清与三角形有关的线段之间的数量关系和位置关系,对于研究三角形的性质具有重要意义。
在中考中,与三角形有关的线段判断和计算考查较为容易,分值占4-10分左右,但常常有同学因无法灵活运用和这些线段相关的性质与判定定理,遇到题目时无从下手,导致丢掉这唾手可得的分数。
和三角形有关的线段包括三角形的三边、三角形的高线、中线、角平分线等。其中,三角形的三边常考查边长之间的不等关系与等量关系,具体为:
1 3条线段组成三角形的条件;
2 等腰三角形的两腰相等;
3 直角三角形的三边满足勾股定理。
而三角形的高线、中线、角平分线的性质与判定也是此类题目中的常客。
其中,三角形的高线可以得到垂直,进而与面积、角度相联系;中线可以由中点得到,也可以跟重心、中位线等产生联系,在直角三角形中则常考查斜边上的中线等于斜边的一半;角平分线则更多的是利用角平分线的性质(即角平分线上的点到角两边的距离相等)。
下面,本文将通过中考真题重现,对与三角形有关的线段判断和计算题进行解题方法的总结。
一、真题重现
【例1】(2015年杭州中考第21题)
“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.
(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.
(2)用直尺和圆规作出三边满足a
试题分析
本题第(1)小题主要考查3条线段组成三角形的条件,即只要满足较短的两边之和大于最长边即可;第(2)小题根据要求利用尺规作图作出符合要求的三角形即可。本题考查较为基础。
【例2】(2016年杭州中考第9题)
已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则( )
A.m²+2mn+n²=0
B.m²-2mn+n²=0
C.m²+2mn-n²=0
D.m²-2mn-n²=0
试题分析
本题主要考查等腰三角形性质和勾股定理的结合,由等腰三角形得到边相等,再由勾股定理得出边之间满足的等量关系即可。解决问题的关键是画出图形,找出边长之间的等量关系。
真题详解
如图,m²+m²=(n-m)²,2m²=n²-2mn+m²,
m²+2mn-n²=0.故选:C.


【例3】(2015年杭州中考第22题)
如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.

试题分析
利用分类讨论判断对应的边角关系,最终判断是中线还是高线。
具体来说,由题意可知以F,C,G为顶点的三角形与△EDC有一个锐角相等,则通过分类讨论哪两个角相等,由角度相等结合三角形内角和可得到垂直关系,进而判断出为高线;由角度相等可得到边相等,依据直角三角形斜边上的中线等于斜边的一半,进而判断出为中线。
真题详解
①如图1,若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线.

证明:
∵∠CFG+∠CGF=90°,
∠ECD+∠PCG=90°,
又∵∠CFG=∠ECD,
∴∠CGF=∠PCG,
∴CP=PG,
∵∠CFG=∠ECD,
∴CP=FP,
∴PF=PG=CP,
∴线段CP是△CFG的FG边上的中线;
②如图2,若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线.

证明:
∵DE⊥AC,
∴∠EDC+∠ECD=90°,
∵∠CFG=∠EDC,
∴∠CFG+∠ECD=90°,
∴∠CPF=90°,
∴线段CP为△CFG的FG边上的高线.
③如图3,当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.

二、方法归纳
根据以上例题,我们可以总结出和三角形有关的线段判断和计算的解题方法。
第一步
从问题入手,当题目为求范围问题时,联系三角形有关线段的不等关系;当题目为求值问题或判断几条线段之间的数量关系时,联系三角形有关线段的等量关系。
表现在三角形有关线段的题目中,求范围问题常有:已知三角形两边求第三边范围,或者判断三条线段能否构成三角形的问题等;
求值或数量关系的问题常有:直角三角形或等腰三角形已知两边求第三边问题,求边长之间的数量关系的问题,根据三角形的高线、中线、角平分线求线段长、面积等等。
第二步
根据题目条件中出现的三角形线段,应用线段相关的定理进行解题,具体如下:

与三角形有关的线段判断和计算是进一步认识其他几何图形的重要基础,通过本文的分析,希望能帮助学生熟练掌握此类题目:
根据问题,去联系相应的不等关系与等量关系,再根据题目出现的条件,使用线段的相关定理去获得线段线段间的数量关系或进行计算,从而解决问题。