python 点图 分组_python scatter散点图用循环分类法加图例

本文实例为大家分享了python scatter散点图用循环分类法加图例,供大家参考,具体内容如下

import matplotlib.pyplot as plt

import kNN

plt.rcParams['font.sans-serif']=['Simhei']

plt.rcParams['axes.unicode_minus']=False

datingDataMat, datingLabels = kNN.file2matrix('datingTestSet2.txt')

plt.figure()

type1_x = [] #一共有3类,所以定义3个空列表准备接受数据

type1_y = []

type2_x = []

type2_y = []

type3_x = []

type3_y = []

for i in range(len(datingLabels)): #1000组数据,i循环1000次

if datingLabels[i] == '1': #根据标签进行数据分类,注意标签此时是字符串

type1_x.append(datingDataMat[i][0]) #取的是样本数据的第一列特征和第二列特征

type1_y.append(datingDataMat[i][1])

if datingLabels[i] == '2':

type2_x.append(datingDataMat[i][0])

type2_y.append(datingDataMat[i][1])

if datingLabels[i] == '3':

type3_x.append(datingDataMat[i][0])

type3_y.append(datingDataMat[i][1])

plt.scatter(type1_x, type1_y, s=20, c='r', label='不喜欢')

plt.scatter(type2_x, type2_y, s=40, c='b', label='魅力一般')

plt.scatter(type3_x, type3_y, s=60, c='k', label='极具魅力')

plt.legend()

plt.show()

用面向对象的写法:

import matplotlib.pyplot as plt

import kNN

plt.rcParams['font.sans-serif']=['Simhei']

plt.rcParams['axes.unicode_minus']=False

datingDataMat, datingLabels = kNN.file2matrix('datingTestSet2.txt')

plt.figure()

axes = plt.subplot(111)

type1_x = []

type1_y = []

type2_x = []

type2_y = []

type3_x = []

type3_y = []

for i in range(len(datingLabels)):

if datingLabels[i] == '1':

type1_x.append(datingDataMat[i][0])

type1_y.append(datingDataMat[i][1])

if datingLabels[i] == '2':

type2_x.append(datingDataMat[i][0])

type2_y.append(datingDataMat[i][1])

if datingLabels[i] == '3':

type3_x.append(datingDataMat[i][0])

type3_y.append(datingDataMat[i][1])

type1 = axes.scatter(type1_x, type1_y, s=20, c='r')

type2 = axes.scatter(type2_x, type2_y, s=40, c='b')

type3 = axes.scatter(type3_x, type3_y, s=60, c='k')

plt.legend((type1, type2, type3), ('不喜欢', '魅力一般', '极具魅力'))

plt.show()

201931984350246.jpg?201921984359

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值