我想给你的建议,如果你学习python是数据分析的目的,和数据分析的样品必须经过大量的微操作来达到清洗和提取的目的,远离python,棘手的事情,我的python学习技能并不好,细节的操作调用dll的所有c。编制的python的数组操作都在numpy, python的数组是有缺陷的。当你实际上是操纵数据的过程中学习python, python的数组可以恶心,直到你放弃。没有数组。的东西不是python的错。错的是,我需要处理的数据是所有这类数组微调。数据清洗和提取不得使用python。核心是困难的,锤不能被打破。numpy是好的,需要转换思维,numpy的心态和大多数编程语言是非常不同的。数据分析的一个重要部分放弃python位于python的他妈的数组和无尽的类库,导致学习的成本太高,比如你只能numpy科学计算,数据清洗和数据提取与c舒适。
使用第三方库相当于重新学习的编程语言。python的操作太粗糙。就像一个巨人的手指不能触碰砾石。你知道很多事情的原则,但是你不能认识到这一点。此时,python永远不会比c。你学得越多,你越觉得c是自由。所有你需要的是学习最基本的东西,然后堆积代码。更生动的比喻是盖房子。C直接使用水泥和沙子,而Python是地板的成品,基金会和墙使用,和C是建立。你的房子可能崩溃,但可以避免通过练习几次,但是python是一种严重的受伤,你必须阅读每个组件的指令。个人研究数据,c更关注细节和微调,而python纯粹是使用别人的结果,价格是没完没了的学习。我们的动机对学习python只能某个领域python产生了成熟的应用。
python的操作规模很好,细节并不好。你用的越多,你越觉得python是弯曲和过程并不简单。python的名字的确是形象,python,没有一个地方是直的。