- 博客(805)
- 资源 (1)
- 收藏
- 关注
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.rolling
`pandas.DataFrameGroupBy.rolling(*args, **kwargs)` 是 DataFrameGroupBy 对象的一个方法,它将滚动窗口操作与分组操作结合在一起。此方法首先按照指定的列或索引进行分组,然后在每个分组内部应用滚动窗口操作,允许在每个分组内进行移动统计计算。
2026-01-03 00:15:00
675
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.sample
`pandas.DataFrameGroupBy.sample(n=None, frac=None, replace=False, weights=None, random_state=None)` 是 DataFrameGroupBy 对象的一个方法,用于从每个分组中随机抽取样本。这个方法允许从每个分组中独立地抽取指定数量或比例的行,常用于数据分析中的抽样操作。
2026-01-03 00:15:00
1610
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.rank
`pandas.DataFrameGroupBy.rank(method='average', ascending=True, na_option='keep', pct=False, axis=<no_default>)` 是 DataFrameGroupBy 对象的一个方法,用于对每个分组内的数据进行排名。该方法会根据分组内的值大小分配排名,相同值会根据 `method` 参数的设置分配排名。
2026-01-02 00:15:00
1432
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.resample
`pandas.DataFrameGroupBy.resample(rule, *args, include_groups=True, **kwargs)` 是 DataFrameGroupBy 对象的一个方法,用于对每个分组内的数据进行重采样操作。这个方法将分组和时间序列重采样结合起来,允许对每个分组按指定的时间频率进行重新采样和聚合。
2026-01-02 00:15:00
713
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.prod
`pandas.DataFrameGroupBy.prod([numeric_only, min_count])` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内所有数值的乘积。这个方法会对每个分组中的所有数值进行乘法运算,返回每组的乘积结果。
2026-01-01 00:15:00
773
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.quantile
`pandas.DataFrameGroupBy.quantile(q=0.5, interpolation='linear', numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组的指定分位数。该方法对每个分组分别计算分位数值,是统计分析中常用的方法之一。
2026-01-01 00:15:00
1149
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.ohlc
`pandas.DataFrameGroupBy.ohlc()` 是 DataFrameGroupBy 对象的一个方法,用于计算每组的 OHLC(Open-High-Low-Close)值。这个方法主要用于金融数据分析,但也可以用于任何需要获取分组数据中第一个、最大、最小和最后一个值的场景。
2025-12-31 00:15:00
1365
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.pct_change
`pandas.DataFrameGroupBy.pct_change(periods=1, fill_method=<no_default>, limit=<no_default>, freq=None, axis=<no_default>)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内元素的百分比变化。该方法计算每个元素相对于前一个元素的变化百分比,对于每个分组都是独立计算的,不会跨越分组边界。
2025-12-31 00:15:00
851
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.nth
`pandas.DataFrameGroupBy.nth(n, dropna=None)` 是 DataFrameGroupBy 对象的一个方法,用于从每个分组中选择第 n 个元素。这个方法允许您按位置选择每个分组中的特定行,其中 n 可以是正数(从开始计数)或负数(从末尾计数)。它在需要获取每个分组中的特定位置元素时非常有用。
2025-12-30 00:15:00
1750
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.nunique
`pandas.DataFrameGroupBy.nunique(dropna=True)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组中唯一值的数量。它会返回一个 Series,索引是分组键,值是对应分组中唯一值的个数。这个方法在数据分析中非常有用,特别是在需要了解分组数据多样性或唯一性的情况下。
2025-12-30 00:15:00
1034
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.min
`pandas.DataFrameGroupBy.min(numeric_only=False, min_count=-1, engine=None, engine_kwargs=None)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组的数值列的最小值。该方法返回一个包含每个分组最小值的新 DataFrame,其索引是分组键,列是原始 DataFrame 的数值列。
2025-12-29 00:15:00
760
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.ngroup
`pandas.DataFrameGroupBy.ngroup(ascending=True)` 是 DataFrameGroupBy 对象的一个方法,用于返回每个组的整数标签。这个方法返回一个 Series,其中包含与原始 DataFrame 相同索引的分组编号,从 0 开始递增。`ngroup()` 与 `cumcount()` 不同,它为每个唯一的组分配一个唯一的数字标签,而不是在每个组内计算累积计数。
2025-12-29 00:15:00
896
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.mean
`pandas.DataFrameGroupBy.mean(numeric_only=False, engine=None, engine_kwargs=None)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组的数值列的平均值。该方法返回一个包含每个分组均值的新 DataFrame,其索引是分组键,列是原始 DataFrame 的数值列。
2025-12-28 00:15:00
1340
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.median
`pandas.DataFrameGroupBy.median(numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组的数值列的中位数。该方法返回一个包含每个分组中位数的新 DataFrame,其索引是分组键,列是原始 DataFrame 的数值列。
2025-12-28 00:15:00
1004
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.last
`pandas.DataFrameGroupBy.last(numeric_only=False, min_count=-1, skipna=True)` 是 DataFrameGroupBy 对象的一个方法,用于返回每个分组的最后一个非空值。这个方法会从每个分组中返回最后一个有效的(非NA)行。
2025-12-27 00:15:00
696
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.max
`pandas.DataFrameGroupBy.max(numeric_only=False, min_count=-1, engine=None, engine_kwargs=None)` 是 DataFrameGroupBy 对象的一个方法,用于返回每个分组中的最大值。这个方法会对每个分组的每一列计算最大值。
2025-12-27 00:15:00
1694
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.idxmax
`pandas.DataFrameGroupBy.idxmax(axis=<no_default>, skipna=True, numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于返回每个分组中每列最大值的索引标签。该方法会为每个分组的每一列找到具有最大值的行的索引。
2025-12-26 00:15:00
821
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.idxmin
`pandas.DataFrameGroupBy.idxmin(axis=<no_default>, skipna=True, numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于返回每个分组中每列最小值的索引标签。该方法会为每个分组的每一列找到具有最小值的行的索引。
2025-12-26 00:15:00
705
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.head
`pandas.DataFrameGroupBy.head(n=5)` 是 DataFrameGroupBy 对象的一个方法,用于获取每个分组的前 n 行数据。该方法会为每个分组返回前 n 行记录,并将所有分组的结果合并成一个 DataFrame。
2025-12-25 00:15:00
1121
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.first
`pandas.DataFrameGroupBy.first(numeric_only=False, min_count=-1, skipna=True)` 是 DataFrameGroupBy 对象的一个方法,用于获取每个分组中第一行非空值的数据。该方法会为每个分组返回一行数据,这一行数据来自于该分组中第一行非空值(根据 `skipna` 参数决定是否跳过 NaN 值)。
2025-12-25 00:15:00
1207
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.cumprod
`pandas.DataFrameGroupBy.ffill(limit=None)` 是 DataFrameGroupBy 对象的一个方法,用于在每个分组内向前填充缺失值(NaN)。该方法会将每个分组中的 NaN 值用前面最近的非 NaN 值进行填充,不同分组之间相互独立,不会跨分组进行填充。
2025-12-24 00:15:00
667
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.fillna
`pandas.DataFrameGroupBy.fillna(value=None, method=None, axis=<no_default>, inplace=False, limit=None, downcast=<no_default>)` 是 DataFrameGroupBy 对象的一个方法,用于在每个分组内填充缺失值(NaN)。该方法可以在每个分组内部独立地填充缺失值,支持多种填充策略,包括使用固定值、前向填充、后向填充等方式。
2025-12-24 00:15:00
1832
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.describe
`pandas.DataFrameGroupBy.describe(percentiles=None, include=None, exclude=None)` 是 DataFrameGroupBy 对象的一个方法,用于生成分组数据的描述性统计信息。它会为每个分组计算数值型列的基本统计量,包括计数、均值、标准差、最小值、四分位数和最大值等。
2025-12-23 00:15:00
1350
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.diff
`pandas.DataFrameGroupBy.diff(periods=1, axis=0)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内数据的一阶或高阶差分。该方法会在每个分组内部计算相邻行之间的差异,而在不同分组之间不进行计算,保持 NaN 值。
2025-12-23 00:15:00
925
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.cumprod
`pandas.DataFrameGroupBy.cumprod(axis=0)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内数值的累计乘积。对于每个分组,该方法会按照数据的顺序依次将当前值与之前所有值相乘,返回到目前为止的累积乘积。
2025-12-22 00:15:00
752
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.cumsum
`pandas.DataFrameGroupBy.cumsum(axis=0)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内数值的累计和。对于每个分组,该方法会按照数据的顺序依次将当前值与之前所有值相加,返回到目前为止的累积和。
2025-12-22 00:15:00
815
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.cummax
`pandas.DataFrameGroupBy.cummax(axis=0, numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内数值的累计最大值。对于每个分组,该方法会按照数据的顺序依次比较当前值与之前所有值,返回到目前为止遇到的最大值。
2025-12-21 00:15:00
538
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.cummin
`pandas.DataFrameGroupBy.cummin(axis=0, numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内数值的累计最小值。对于每个分组,该方法会按照数据的顺序依次比较当前值与之前所有值,返回到目前为止遇到的最小值。
2025-12-21 00:15:00
803
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.cov
`pandas.DataFrameGroupBy.cov(min_periods=None, ddof=1, numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内数值列之间的协方差矩阵。协方差衡量两个变量如何一起变化,正值表示正相关,负值表示负相关,零值表示无线性关系。
2025-12-20 00:15:00
1354
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.cumcount
`pandas.DataFrameGroupBy.cumcount(ascending=True)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内元素的累积计数。它为每个分组中的行分配一个从0开始的连续整数,表示该行在当前分组中的顺序位置。
2025-12-20 00:15:00
1820
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.corrwith
`pandas.DataFrameGroupBy.corrwith(other, axis=<no_default>, drop=False, method='pearson', numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组与另一个 DataFrame、Series 或 ndarray 对象之间的 pairwise 相关系数。
2025-12-19 00:15:00
704
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.count
`pandas.DataFrameGroupBy.count()` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组中非缺失值(non-NA/null)的数量。它会返回一个与原始 DataFrame 列结构相同的 DataFrame,其中每个元素表示相应分组和列中的非空值数量。
2025-12-19 00:15:00
572
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.bfill
`pandas.DataFrameGroupBy.bfill()` 方法用于对每个分组中的缺失值进行向后填充(backward fill)。它会用下一个非缺失值来填充当前的缺失值,如果后面没有非缺失值,则保持缺失状态。这个方法是 `backfill()` 方法的别名,两者功能完全相同。
2025-12-18 00:15:00
579
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.corr
`pandas.DataFrameGroupBy.corr()` 方法用于计算每个分组内数值列之间的相关系数矩阵。它会对每个分组分别计算相关性,返回一个包含所有分组相关性结果的对象。
2025-12-18 00:15:00
1048
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.all
`DataFrameGroupBy.all()` 方法用于检查分组中每个组的元素是否**全部**为 True(或非零、非空值)。它返回一个布尔值 Series,指示每个组是否满足条件。
2025-12-17 00:15:00
614
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.any
`pandas.DataFrameGroupBy.any()` 方法用于检查分组中每个组的元素是否**至少有一个**为 True(或非零、非空值)。它返回一个布尔值 Series,指示每个组是否满足条件。与 `all()` 方法相反,`any()` 只需要组中有一个元素为 True 就返回 True,而 `all()` 需要所有元素都为 True 才返回 True。
2025-12-17 00:15:00
547
原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.filter
`pandas.DataFrameGroupBy.filter(func[, dropna])` 是 DataFrameGroupBy 对象的一个方法,用于根据指定的条件过滤分组。该方法会对每个分组应用一个布尔函数,如果函数返回 True,则保留该分组的所有行;如果返回 False,则丢弃该分组。与 `apply()` 和 `agg()` 等方法不同,`filter()` 不会改变数据的结构,而是根据条件选择性地保留或删除整个分组。
2025-12-16 00:15:00
875
原创 【Pandas】pandas GroupBy Function application SeriesGroupBy.filter
`pandas.SeriesGroupBy.filter(func[, dropna])` 是 SeriesGroupBy 对象的一个方法,用于根据指定的条件过滤分组。该方法会对每个分组应用一个布尔函数,如果函数返回 True,则保留该分组的所有元素;如果返回 False,则丢弃该分组。与 `apply()` 和 `agg()` 等方法不同,`filter()` 不会改变数据的结构,而是根据条件选择性地保留或删除整个分组。
2025-12-16 00:15:00
1236
原创 【Pandas】pandas GroupBy Function application SeriesGroupBy.aggregate
`pandas.SeriesGroupBy.pipe(func, *args, **kwargs)` 是 SeriesGroupBy 对象的一个方法,用于将分组对象作为参数传递给指定的函数。与 `apply()`、`agg()` 和 `transform()` 不同,`pipe()` 的主要用途是将整个分组对象传递给一个函数,而不是对每个分组应用函数。这种方法特别适用于链式操作和自定义函数,允许用户在分组操作之后继续进行更复杂的处理。
2025-12-15 00:15:00
728
原创 【Pandas】pandas GroupBy Function application SeriesGroupBy.DataFrameGroupBy
`pandas.DataFrameGroupBy.pipe(func, *args, **kwargs)` 是 DataFrameGroupBy 对象的一个方法,用于将分组对象作为参数传递给指定的函数。与 `apply()`、`agg()` 和 `transform()` 不同,`pipe()` 的主要用途是将整个分组对象传递给一个函数,而不是对每个分组应用函数。这种方法特别适用于链式操作和自定义函数,允许用户在分组操作之后继续进行更复杂的处理。
2025-12-15 00:15:00
831
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅