自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(805)
  • 资源 (1)
  • 收藏
  • 关注

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.rolling

`pandas.DataFrameGroupBy.rolling(*args, **kwargs)` 是 DataFrameGroupBy 对象的一个方法,它将滚动窗口操作与分组操作结合在一起。此方法首先按照指定的列或索引进行分组,然后在每个分组内部应用滚动窗口操作,允许在每个分组内进行移动统计计算。

2026-01-03 00:15:00 675

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.sample

`pandas.DataFrameGroupBy.sample(n=None, frac=None, replace=False, weights=None, random_state=None)` 是 DataFrameGroupBy 对象的一个方法,用于从每个分组中随机抽取样本。这个方法允许从每个分组中独立地抽取指定数量或比例的行,常用于数据分析中的抽样操作。

2026-01-03 00:15:00 1610

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.rank

`pandas.DataFrameGroupBy.rank(method='average', ascending=True, na_option='keep', pct=False, axis=<no_default>)` 是 DataFrameGroupBy 对象的一个方法,用于对每个分组内的数据进行排名。该方法会根据分组内的值大小分配排名,相同值会根据 `method` 参数的设置分配排名。

2026-01-02 00:15:00 1432

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.resample

`pandas.DataFrameGroupBy.resample(rule, *args, include_groups=True, **kwargs)` 是 DataFrameGroupBy 对象的一个方法,用于对每个分组内的数据进行重采样操作。这个方法将分组和时间序列重采样结合起来,允许对每个分组按指定的时间频率进行重新采样和聚合。

2026-01-02 00:15:00 713

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.prod

`pandas.DataFrameGroupBy.prod([numeric_only, min_count])` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内所有数值的乘积。这个方法会对每个分组中的所有数值进行乘法运算,返回每组的乘积结果。

2026-01-01 00:15:00 773

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.quantile

`pandas.DataFrameGroupBy.quantile(q=0.5, interpolation='linear', numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组的指定分位数。该方法对每个分组分别计算分位数值,是统计分析中常用的方法之一。

2026-01-01 00:15:00 1149

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.ohlc

`pandas.DataFrameGroupBy.ohlc()` 是 DataFrameGroupBy 对象的一个方法,用于计算每组的 OHLC(Open-High-Low-Close)值。这个方法主要用于金融数据分析,但也可以用于任何需要获取分组数据中第一个、最大、最小和最后一个值的场景。

2025-12-31 00:15:00 1365

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.pct_change

`pandas.DataFrameGroupBy.pct_change(periods=1, fill_method=<no_default>, limit=<no_default>, freq=None, axis=<no_default>)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内元素的百分比变化。该方法计算每个元素相对于前一个元素的变化百分比,对于每个分组都是独立计算的,不会跨越分组边界。

2025-12-31 00:15:00 851

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.nth

`pandas.DataFrameGroupBy.nth(n, dropna=None)` 是 DataFrameGroupBy 对象的一个方法,用于从每个分组中选择第 n 个元素。这个方法允许您按位置选择每个分组中的特定行,其中 n 可以是正数(从开始计数)或负数(从末尾计数)。它在需要获取每个分组中的特定位置元素时非常有用。

2025-12-30 00:15:00 1750

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.nunique

`pandas.DataFrameGroupBy.nunique(dropna=True)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组中唯一值的数量。它会返回一个 Series,索引是分组键,值是对应分组中唯一值的个数。这个方法在数据分析中非常有用,特别是在需要了解分组数据多样性或唯一性的情况下。

2025-12-30 00:15:00 1034

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.min

`pandas.DataFrameGroupBy.min(numeric_only=False, min_count=-1, engine=None, engine_kwargs=None)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组的数值列的最小值。该方法返回一个包含每个分组最小值的新 DataFrame,其索引是分组键,列是原始 DataFrame 的数值列。

2025-12-29 00:15:00 760

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.ngroup

`pandas.DataFrameGroupBy.ngroup(ascending=True)` 是 DataFrameGroupBy 对象的一个方法,用于返回每个组的整数标签。这个方法返回一个 Series,其中包含与原始 DataFrame 相同索引的分组编号,从 0 开始递增。`ngroup()` 与 `cumcount()` 不同,它为每个唯一的组分配一个唯一的数字标签,而不是在每个组内计算累积计数。

2025-12-29 00:15:00 896

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.mean

`pandas.DataFrameGroupBy.mean(numeric_only=False, engine=None, engine_kwargs=None)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组的数值列的平均值。该方法返回一个包含每个分组均值的新 DataFrame,其索引是分组键,列是原始 DataFrame 的数值列。

2025-12-28 00:15:00 1340

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.median

`pandas.DataFrameGroupBy.median(numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组的数值列的中位数。该方法返回一个包含每个分组中位数的新 DataFrame,其索引是分组键,列是原始 DataFrame 的数值列。

2025-12-28 00:15:00 1004

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.last

`pandas.DataFrameGroupBy.last(numeric_only=False, min_count=-1, skipna=True)` 是 DataFrameGroupBy 对象的一个方法,用于返回每个分组的最后一个非空值。这个方法会从每个分组中返回最后一个有效的(非NA)行。

2025-12-27 00:15:00 696

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.max

`pandas.DataFrameGroupBy.max(numeric_only=False, min_count=-1, engine=None, engine_kwargs=None)` 是 DataFrameGroupBy 对象的一个方法,用于返回每个分组中的最大值。这个方法会对每个分组的每一列计算最大值。

2025-12-27 00:15:00 1694

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.idxmax

`pandas.DataFrameGroupBy.idxmax(axis=<no_default>, skipna=True, numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于返回每个分组中每列最大值的索引标签。该方法会为每个分组的每一列找到具有最大值的行的索引。

2025-12-26 00:15:00 821

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.idxmin

`pandas.DataFrameGroupBy.idxmin(axis=<no_default>, skipna=True, numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于返回每个分组中每列最小值的索引标签。该方法会为每个分组的每一列找到具有最小值的行的索引。

2025-12-26 00:15:00 705

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.head

`pandas.DataFrameGroupBy.head(n=5)` 是 DataFrameGroupBy 对象的一个方法,用于获取每个分组的前 n 行数据。该方法会为每个分组返回前 n 行记录,并将所有分组的结果合并成一个 DataFrame。

2025-12-25 00:15:00 1121

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.first

`pandas.DataFrameGroupBy.first(numeric_only=False, min_count=-1, skipna=True)` 是 DataFrameGroupBy 对象的一个方法,用于获取每个分组中第一行非空值的数据。该方法会为每个分组返回一行数据,这一行数据来自于该分组中第一行非空值(根据 `skipna` 参数决定是否跳过 NaN 值)。

2025-12-25 00:15:00 1207

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.cumprod

`pandas.DataFrameGroupBy.ffill(limit=None)` 是 DataFrameGroupBy 对象的一个方法,用于在每个分组内向前填充缺失值(NaN)。该方法会将每个分组中的 NaN 值用前面最近的非 NaN 值进行填充,不同分组之间相互独立,不会跨分组进行填充。

2025-12-24 00:15:00 667

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.fillna

`pandas.DataFrameGroupBy.fillna(value=None, method=None, axis=<no_default>, inplace=False, limit=None, downcast=<no_default>)` 是 DataFrameGroupBy 对象的一个方法,用于在每个分组内填充缺失值(NaN)。该方法可以在每个分组内部独立地填充缺失值,支持多种填充策略,包括使用固定值、前向填充、后向填充等方式。

2025-12-24 00:15:00 1832

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.describe

`pandas.DataFrameGroupBy.describe(percentiles=None, include=None, exclude=None)` 是 DataFrameGroupBy 对象的一个方法,用于生成分组数据的描述性统计信息。它会为每个分组计算数值型列的基本统计量,包括计数、均值、标准差、最小值、四分位数和最大值等。

2025-12-23 00:15:00 1350

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.diff

`pandas.DataFrameGroupBy.diff(periods=1, axis=0)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内数据的一阶或高阶差分。该方法会在每个分组内部计算相邻行之间的差异,而在不同分组之间不进行计算,保持 NaN 值。

2025-12-23 00:15:00 925

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.cumprod

`pandas.DataFrameGroupBy.cumprod(axis=0)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内数值的累计乘积。对于每个分组,该方法会按照数据的顺序依次将当前值与之前所有值相乘,返回到目前为止的累积乘积。

2025-12-22 00:15:00 752

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.cumsum

`pandas.DataFrameGroupBy.cumsum(axis=0)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内数值的累计和。对于每个分组,该方法会按照数据的顺序依次将当前值与之前所有值相加,返回到目前为止的累积和。

2025-12-22 00:15:00 815

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.cummax

`pandas.DataFrameGroupBy.cummax(axis=0, numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内数值的累计最大值。对于每个分组,该方法会按照数据的顺序依次比较当前值与之前所有值,返回到目前为止遇到的最大值。

2025-12-21 00:15:00 538

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.cummin

`pandas.DataFrameGroupBy.cummin(axis=0, numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内数值的累计最小值。对于每个分组,该方法会按照数据的顺序依次比较当前值与之前所有值,返回到目前为止遇到的最小值。

2025-12-21 00:15:00 803

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.cov

`pandas.DataFrameGroupBy.cov(min_periods=None, ddof=1, numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内数值列之间的协方差矩阵。协方差衡量两个变量如何一起变化,正值表示正相关,负值表示负相关,零值表示无线性关系。

2025-12-20 00:15:00 1354

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.cumcount

`pandas.DataFrameGroupBy.cumcount(ascending=True)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组内元素的累积计数。它为每个分组中的行分配一个从0开始的连续整数,表示该行在当前分组中的顺序位置。

2025-12-20 00:15:00 1820

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.corrwith

`pandas.DataFrameGroupBy.corrwith(other, axis=<no_default>, drop=False, method='pearson', numeric_only=False)` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组与另一个 DataFrame、Series 或 ndarray 对象之间的 pairwise 相关系数。

2025-12-19 00:15:00 704

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.count

`pandas.DataFrameGroupBy.count()` 是 DataFrameGroupBy 对象的一个方法,用于计算每个分组中非缺失值(non-NA/null)的数量。它会返回一个与原始 DataFrame 列结构相同的 DataFrame,其中每个元素表示相应分组和列中的非空值数量。

2025-12-19 00:15:00 572

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.bfill

`pandas.DataFrameGroupBy.bfill()` 方法用于对每个分组中的缺失值进行向后填充(backward fill)。它会用下一个非缺失值来填充当前的缺失值,如果后面没有非缺失值,则保持缺失状态。这个方法是 `backfill()` 方法的别名,两者功能完全相同。

2025-12-18 00:15:00 579

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.corr

`pandas.DataFrameGroupBy.corr()` 方法用于计算每个分组内数值列之间的相关系数矩阵。它会对每个分组分别计算相关性,返回一个包含所有分组相关性结果的对象。

2025-12-18 00:15:00 1048

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.all

`DataFrameGroupBy.all()` 方法用于检查分组中每个组的元素是否**全部**为 True(或非零、非空值)。它返回一个布尔值 Series,指示每个组是否满足条件。

2025-12-17 00:15:00 614

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.any

`pandas.DataFrameGroupBy.any()` 方法用于检查分组中每个组的元素是否**至少有一个**为 True(或非零、非空值)。它返回一个布尔值 Series,指示每个组是否满足条件。与 `all()` 方法相反,`any()` 只需要组中有一个元素为 True 就返回 True,而 `all()` 需要所有元素都为 True 才返回 True。

2025-12-17 00:15:00 547

原创 【Pandas】pandas GroupBy Function application DataFrameGroupBy.filter

`pandas.DataFrameGroupBy.filter(func[, dropna])` 是 DataFrameGroupBy 对象的一个方法,用于根据指定的条件过滤分组。该方法会对每个分组应用一个布尔函数,如果函数返回 True,则保留该分组的所有行;如果返回 False,则丢弃该分组。与 `apply()` 和 `agg()` 等方法不同,`filter()` 不会改变数据的结构,而是根据条件选择性地保留或删除整个分组。

2025-12-16 00:15:00 875

原创 【Pandas】pandas GroupBy Function application SeriesGroupBy.filter

`pandas.SeriesGroupBy.filter(func[, dropna])` 是 SeriesGroupBy 对象的一个方法,用于根据指定的条件过滤分组。该方法会对每个分组应用一个布尔函数,如果函数返回 True,则保留该分组的所有元素;如果返回 False,则丢弃该分组。与 `apply()` 和 `agg()` 等方法不同,`filter()` 不会改变数据的结构,而是根据条件选择性地保留或删除整个分组。

2025-12-16 00:15:00 1236

原创 【Pandas】pandas GroupBy Function application SeriesGroupBy.aggregate

`pandas.SeriesGroupBy.pipe(func, *args, **kwargs)` 是 SeriesGroupBy 对象的一个方法,用于将分组对象作为参数传递给指定的函数。与 `apply()`、`agg()` 和 `transform()` 不同,`pipe()` 的主要用途是将整个分组对象传递给一个函数,而不是对每个分组应用函数。这种方法特别适用于链式操作和自定义函数,允许用户在分组操作之后继续进行更复杂的处理。

2025-12-15 00:15:00 728

原创 【Pandas】pandas GroupBy Function application SeriesGroupBy.DataFrameGroupBy

`pandas.DataFrameGroupBy.pipe(func, *args, **kwargs)` 是 DataFrameGroupBy 对象的一个方法,用于将分组对象作为参数传递给指定的函数。与 `apply()`、`agg()` 和 `transform()` 不同,`pipe()` 的主要用途是将整个分组对象传递给一个函数,而不是对每个分组应用函数。这种方法特别适用于链式操作和自定义函数,允许用户在分组操作之后继续进行更复杂的处理。

2025-12-15 00:15:00 831

Windows zookeeper/kafka开启自启动

Windows 环境 为zookeeper和kafka配置开机自启动服务。

2018-12-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除