AI辅助研发的行业应用案例主要集中在药物研发领域,尤其是在药物发现阶段。AI技术在药物研发中的应用已经取得了显著进展,包括靶点及生物标记物的选择与确定、先导化合物的确定、构效关系的研究与活性化合物的筛选、候选药物的选定等[2]。这些应用不仅提高了药物研发的效率和准确性,还有助于加速新药研发的进程[3]。
具体案例包括Antiverse、Arctoris、GATC Health、Genomenon、德睿智药、ONOCROSS等公司在药物研发中采用AI技术的实践[7][8]。这些案例展示了AI技术如何通过分析大量的数据,帮助科学家们在短时间内筛选出潜在的药物候选物,从而加快新药研发过程。
此外,AI技术的应用还涉及到药物设计、化学合成、药物再利用、多重药理学和药物筛选等多个方面[9]。这些应用不仅有助于疾病预防与诊疗,还推动了创新药物与医疗器械的研发应用。
综上所述,AI辅助研发的行业应用案例主要体现在药物研发领域,通过利用机器学习算法处理大量临床数据,进行药物靶点的选择、化合物的设计和筛选,以及药物临床试验的设计等,极大地提高了药物研发的效率和成功率。
AI在药物研发中的具体应用案例有哪些?
AI在药物研发中的具体应用案例包括但不限于以下几个方面:
- 疾病建模与治疗靶点预测:AI技术能够根据病人的分子分析数据生成疾病模型,代表疾病的异质性,识别失调的分子通路并预测候选治疗靶点[33]。例如,AlphaFold2在蛋白质结构预测上展现出高可信度,远优于传统实验方法的效率和成本表现[35]。
- 药物发现平台:腾讯AI Lab开发的iDrug是一个AI驱动的临床前新药研发开放平台,通过深度学习算法和数据库及云计算支持,帮助用户大幅度减少寻找潜在活性药物的时间和成本[34]。
- 生成式AI在药物设计中的应用:生成式AI在药物发现领域的应用,如英硅智能公司利用其AI平台成功赋能多款抗肿瘤候选药物的发现和设计,包括靶点发现平台PandaOmics、分子生成平台Chemistry42和临床试验结果预测平台inClinico[38]。
- 系统分析与适应症扩展机会发现:通过对所有开发待选药物及已上市药物的系统分析,AI和组合分析方法在30个慢性病领域发现了477个适应症扩展机会,显示了AI和组合分析方法有潜力提高整个药物发现行业的创新速度并降低成本的潜力[40]。
这些应用案例展示了AI在药物研发中的广泛应用,从疾病建模到药物靶点预测,再到药物发现和优化,AI技术正逐步改变药物研发的面貌。
如何评价AI技术在药物发现阶段的效率和准确性?
AI技术在药物发现阶段的效率和准确性得到了广泛的认可和积极的评价。首先,AI技术在药物发现过程中扮演着催化剂的角色,它提高了药物发现的效率和准确性,减少了研发的耗时[41]。这一点从多个角度得到了证实,例如,AI技术通过对分子、细胞、器官、动物、临床等不同层面数据的整合和分析,不仅提升了研发流程本身的效率,还可能促进整体行业认知水平的提高[46]。此外,AI和ML方法的应用显著加快了候选药物的发现速度,显示出其在准确性搜索和优化策略方面的优势[47]。
尽管AI技术提高了药物发现的效率和准确性,但它并没有改变新药研发的整体流程。有业内人士指出,无论是伦理监管还是实际应用,AI预测的数据短期无法代替临床试验结果[50]。这表明,虽然AI技术能够加速药物筛选和提高药物研发的效率,但在某些关键环节上,如临床试验的结果验证,AI技术仍面临挑战。
AI技术在药物发现阶段的效率和准确性方面表现出色,能够显著加速新药发现的过程,提高研发速度和准确性。然而,为了充分发挥AI技术的作用,需要解决伦理监管和临床试验数据验证等问题,以确保AI技术的应用不会对新药研发的整体流程产生负面影响。
德睿智药等公司在AI辅助药物研发方面的具体成果是什么?
德睿智药(MindRank)在AI辅助药物研发方面的成果包括:部分成果发表于多个Nature、Cell系列子刊及ICML等国际顶级期刊及会议[51];AI解决方案被Deep Pharma Intelligence评为"2018-2020全球最重要的11个AI药物研发突破性成就"之一[51];自研一站式AI药物研发平台Molecule Pro™️成功交付数家上市药企及生物科技公司药物管线的研发里程碑成果[52];突破小分子难成药靶点,AI辅助设计药物管线8个月内进入IND- Enabling Studies阶段[53];部分AI解决方案通过使用NVIDIA A100 GPU实现,大幅提升研发效率[57];在8个月的时间内,通过合成并验证了几十个小分子就得到了优质的临床前候选化合物[59]。
德睿智药在AI辅助药物研发方面取得了显著的成果,包括发表高水平研究成果、成功应用AI技术加速药物研发进程以及通过合成验证小分子化合物等方面。
AI技术在药物设计和化学合成方面的最新进展有哪些?
- 自动化学合成AI机器人的开发:科学家和研究团队开发了一款自动化学合成AI机器人RoboChem,该机器人通过集成现有的商业化硬件、自定义软件和闭环的贝叶斯优化算法,实现了对光催化反应的全面自动化处理,其速度和准确性已经超越了人类[61]。
- AI在药物发现中的作用:数字生物学和生成式人工智能(AI)正在帮助重塑药物发现进程,尽管利用AI开发新药尚处于起步阶段,但AI设计的药物在药物发现过程中的应用尚处于起步阶段[64]。数字生物学和生成式AI正在帮助重塑药物发现、外科手术、医学影像和可穿戴设备等领域,这可能成为自计算机出现以来医疗行业最引人注目的变革之一[66]。
- AI在化学逆合成领域的突破:AI技术在化学逆合成领域实现了突破,这种技术能够更智能、更高效地设计药物分子的合成路线,接近十年化学家水平[65]。
- AI for Science的应用进展:人工智能for Science的发展已开始在多个科研领域发挥重要作用,特别是在化学领域,无论是在新材料发现、模拟准确性、合成路径优化还是在实验自动化方面,都推动着精准化学的进步[62]。
- 机器学习范式在化学领域的应用:随着人工智能技术的兴起,传统的基于实验和物理模型的方式逐渐与基于数据的机器学习范式融合,越来越多的用于计算机处理数据表示被开发出来,并不断适应着以生成式为主的机器学习范式[69]。
AI技术在药物设计和化学合成方面的应用正处于快速发展阶段,不仅能够加速药物的发现和合成,还能推动化学研究向更加精准、智能的方向发展。
药物再利用领域中,AI技术是如何帮助提高研发效率和降低成本的?
首先,AI技术能够通过模拟随机临床试验来发现药物的新用途,这为药物再利用提供了从实验室到临床的快速过渡[71]。其次,基于高质量大数据分析和机器学习等人工智能技术的帮助,AI能够简化药物发现过程,减少涉及的时间和成本,从而开发出更有效和高效的治疗方法[72]。此外,通过大数据处理、机器学习、深度学习等技术,AI的应用可以有效缩短研发时间,降低研发成本[73]。在疫情初期,AI对现有药物的再利用不仅缓解了无药可医的困境,也为新冠疫苗和药物的研发起到了缓冲作用[74]。
AI技术的应用于药物研发的各个阶段,包括靶标发现和确证、药物先导化合物的发现和优化、药物药代和毒性评价等,已经引起了研究院所和制药行业的高度重视[75]。AI制药通过将自然语言处理、机器学习及大数据等技术应用到制药领域的各个环节,提高和优化新药研发的效率及质量,降低临床研究失败概率及研发成本[76]。例如,华为云盘古药物分子大模型对Drug X的研发提供了重要帮助,使得Drug X先导药的研发周期获得了数十倍的加速,从数年缩短到数月[79]。应用AI技术,可以缩短前期研发约一半时间,使新药研发变得更加高效[80]。
AI技术在药物再利用领域中通过提供新的发现策略、简化药物发现过程、降低研发成本、加速研发周期等多种方式,显著提高了研发效率和降低了成本。
参考资料
[1]. 2023年5个最热门的AI应用案例解析 - 腾讯云
[2]. 【2021版】全球44家顶尖药企ai辅助药物研发行动白皮书 - 知乎
[3]. 研究报告【2022年第7期】人工智能在新药研发中的应用
[4]. 【超全】概述:人工智能在药物发现与研发中的应用 - 知乎
[5]. 德勤发布《AI案例精选》 助力AI规模化应用 - 新华网
[6]. 人工智能行业深度:行业格局、市场前景、产业链及相关企业深度梳理【慧博出品】 - 知乎
[8]. 10个案例,印证ai正在改变新药研发进程 - 知乎
[10]. 专题报告 | 人工智能在新药研发中的应用现状与挑战 - 知乎
[11]. 麦肯锡在全球调研分析160个案例,给出5个行业的34个AI应用场景
[12]. 北京市首批10个人工智能行业大模型应用案例发布 - 新华网
[13]. 百度ai产业研究中心首发50个智能化案例 梳理16大行业变革路径
[14]. 行业图谱——人工智能在药物发现与研发中的应用
[15]. [PDF] 2022年人工智能系列短报告: 中国AI开发平台应用探析(摘要版)
[16]. 500 余个案例,6 大应用方向,AIIA 报告全面解析AI 抗疫情况 - 雷峰网
[17]. 英特尔中国 Ai 应用案例集锦
[18]. 人工智能在药物研发中的应用(上):AI与制药场景如何相互“适配”?
[19]. 药学大综述:人工智能在药物研发中应用挑战和未来 - 知乎
[20]. 英特尔® AI: In Production | 成功案例
[21]. 德勤咨询:2021年ai案例精选—助力ai规模化应用(附下载) | 互联网数据资讯网-199it | 中文互联网数据研究资讯中心-199it
[22]. AI对于创新和研发的意义是什么 - Worktile
[23]. PDF 2021中国ai/计算制药 研 产业报告:药物发现 究 报 告
[24]. 分享| 人工智能的12个典型案例 - 51CTO
[25]. 人工智能ai最新案例和趋势,看这一篇就够了 - 知乎
[26]. 《麻省理工科技评论》公布15个中国AI大模型先进应用案例 - 凤凰网
[27]. 张亚勤:人工智能赋能生命科学——机遇与挑战-清华大学智能产业研究院
[28]. 麦肯锡重磅报告:Ai对哪些行业冲击最大?-36氪
[29]. 人工智能在新药研发中的应用现状与挑战 - OFweek
[30]. 56页|如何运用ai创造业务价值:12个真实成功案例(附下载) - 知乎
[31]. [PDF] 随着AI 技术在药物研发上的应用价值逐渐被认识和释放,AI 在医药行业的
[32]. 近3年ai应用于药物研发的23项重磅合作回顾 - 知乎
[33]. Drug Discov Today|人工智能增强的药物设计和开发:迈向计算型精准医学-腾讯云开发者社区-腾讯云
[34]. 腾讯 AI Lab - iDrug
[35]. AI 助力生命科学创新范式变革正突破新药研发“双十” 困局 - 英特尔
[36]. 通过案例验证算法是当前所有AI制药公司需要解决的难题| 数智前瞻-36氪
[37]. 人工智能在药物发现方面的成功案例——情况如何?,Expert ... - X-MOL
[38]. 生成式AI驱动新药研发 助力难成药靶点开发是关键_澎湃号·媒体_澎湃新闻-The Paper
[39]. 业内人士谈中国AI新药研发:有成功案例,体量质量是挑战-中新网
[40]. 人工智能在药物发现中的兴起:挑战与机遇 - 澎湃新闻
[41]. AI研发制药渐成趋势,英矽智能达成5亿美元对外授权 - 第一财经
[42]. Ai引发药物开发革命:探索机遇与挑战 - 知乎 - 知乎专栏
[43]. [PDF] 人工智能在新药发现中的应用进展
[44]. 综述:药物发现中的机器学习 - 知乎 - 知乎专栏
[45]. 群雄逐鹿,渐起分化——《中国AI新药研发市场洞察分析》报告正式发布
[46]. 全球AI制药进入新阶段 - 新华网
[47]. [PDF] 人工智能在新药研发中的应用1 - 研究报告
[48]. 综述:药物发现中的机器学习 | 机器之心
[49]. 36氪研究院 | 2022年中国ai药物研发行业洞察报告-36氪
[50]. AI制药加速落地 - 证券时报
[51]. 德睿智药 MindRank
[52]. 德睿智药完成数千万美元A轮融资AI助力药物管线研发 - 新华网
[53]. 突破小分子难成药靶点,德睿智药AI辅助设计药物管线8个月内进入IND- Enabling Studies阶段 | 药时代
[54]. [PDF] AI 新药研发(AIDD)行业系列报告
[55]. 2023上半年参会回顾 | 德睿智药亮相系列行业活动,分享AI+Drug Discovery技术创新实践 - 知乎
[56]. 我国学者在人工智能药物设计上取得新进展
[57]. GPU助力德睿智药加速创新药物研发 - NVIDIA 英伟达博客
[58]. 在 MindRank AI(德睿智药)工作是什么体验? - 知乎
[59]. 突破小分子难成药靶点,德睿智药AI辅助设计药物管线8个月内进入IND
[60]. 德睿智药公司联合创始人兼中国区总裁张龙应邀到我校讲学 - 广药新闻网
[61]. 科学家开发自动化学合成AI机器人,速度和准确性超越人类 - 新浪
[62]. Ai驱动化学研究变革----中国科学院
[63]. 2023年12月14日侯廷军:基于AI的药物设计:从分子生成到分子工厂
[64]. AI加速药物发现,前景尚需实践检验 - 新闻- 科学网
[65]. Ai在化学逆合成领域实现突破,智化科技测评接近十年化学家水平-36氪
[66]. NVIDIA 生成式AI 开启药物研发与设计的新纪元
[67]. 人工智能在药物设计、性质预测以及合成中的应用进展 - 知乎
[68]. AI驱动化学研究变革-瞭望周刊社 - 新华网
[69]. AI for Science:人工智能改变化学领域,机器学习范式加速化学物质发现_澎湃号·湃客_澎湃新闻-The Paper
[70]. 不知疲倦自主工作,一周完成博士数月研究,“AI化学家”登上Science
[71]. Nature子刊 | 含作者本人解读:AI通过模拟随机临床试验发现药物新用途 - 知乎
[72]. 降低70%研发成本,AI药物研发在争议中前行 - 搜狐
[73]. 人工智能助力有望减少新药研发成本和时间 - 新浪新闻
[74]. 疫情之下全球“AI制药”实现加速跑 - 新华网
[75]. 【科技日报】人工智能将成药物研发关键工具----中国科学院
[76]. AI制药风潮席卷打造药物研发“新常态” - 福建省商务厅
[77]. Ai+药物研发:人工智能赋能新药研发 - 百度ai开放平台
[78]. AI浪潮席卷而至,药物研发如何破解成本与效率的“双重滞碍”?
[79]. 以大模型加速新药研发,成本降低70%:一家大厂的「云端」实战-腾讯云开发者社区-腾讯云
[80]. 人工智能在新药研发中的应用现状与挑战 - 搜狐