法拉第效应维尔德常数_法拉第旋光效应实验讲义.doc

该实验报告详细介绍了法拉第旋光效应,旨在理解磁光效应现象,验证法拉第-费尔德定律,并探讨与自然旋光的区别。实验中使用了LED光源、偏振片等设备,通过测量磁致旋光角来计算维尔德常数。报告还涉及量子理论解释法拉第效应,并提供了数据处理步骤和维尔德常数的计算方法。
摘要由CSDN通过智能技术生成

实验报告

题目: 法拉第旋光效应

姓 名 翟浩淋

学 院 理学院

专 业 应用物理学

班 级 2013214103

学 号 2013212819

班内序号 06

2015年 10 月 4 日

【实验目的】

1.了解磁光效应现象和法拉第效应的机理 。

2.测量磁致旋光角,验证法拉第—费尔德定律θ=VBL 。

3.法拉第效应与自然旋光的区别 。

4.了解磁光调制原理 。

【实验仪器】

LED发光二极管(或白光光源和滤光片),偏振片,透镜,直流励磁电源,导轨,偏振片,集成霍尔援建,5V稳压电源等。

【实验原理】

介质因外加磁场而改变其光学性质的现象称之为磁光效应。其中,光通过处于磁场中的物质时偏振面发生旋转的效应较为重要,我们称这种偏振面的磁致旋转效应为法拉第效应。它与克尔效应一起揭示了光的电磁本质,是光的电磁理论的实验基础。法拉第在寻找磁与光现象的联系时首先发现了线偏振光在通过处于磁场当中的各向同性介质时其偏振面发生旋转的现象。在磁场不是非常强时,偏振面的旋转角度 与介质的长度及磁感应强度在光的传播方向上的分量B成正比

(1)

比例系数V成为维尔德(Verdet)常数,它取决于光的波长和色散关系,一般物质的维尔德常数比较小,表1给出了几种材料的维尔德常数V。

法拉第效应与自然旋光不同。在法拉第效应中对于给定的物质,光矢量的旋转方向只由磁场的方向决定,而与光的传播方向无关,即当光线经样品物质往返一周时,旋光角将倍增。

线偏振光可看作两个相反偏振量σ+和σ –的圆偏振光的相干叠加,从原子物理知识可知,磁场将使原子中的振荡电荷产生旋进运动,旋进的频率等于拉莫尔频率,即 L =,这里e和m分别为振荡粒子的电荷和质量,B为磁场强度。线偏振光的σ+和σ –分量有不同的旋进频率,分别为 和,相应的折射率n+和n-,相速度v+和v- 都不同,而在光学行为中是等效的,偏振面旋转角由下述等式得到,旋转角由光通过的材料长度决定,即

(2)

上式中,c为光速,为入射光的频率,上式的推导较为简单,是建立在经典电磁理论的基础之上。

由量子理论知道,介质中原子的轨道电子磁矩

μ= - (3)μ·B=·B= (4)

其中为电子的轨道角动量沿磁场方向的分量。

当平面偏振光在磁场B作用下通过样品介质时,光子与束缚电子发生相互作用,光子使束缚电子由基态激发到高能态,处于激发态的电子吸收了光量子的角动量()。因此电子的势能增加了

(5)

其中正号对应于左旋圆偏振光量子,负号对应于右旋圆偏振光量子,在电子的势能增加同时,光子的能量减少了。

由量子理论知道,光子具有的能量为,样品介质对光子的折射率n=n()。当光子的能量减少了时,n=n(-),函数形式未发生改变。

将n在n()附近展开有

n=n(-)≈n()± (6)

将(5)式代入(6)式有

n≈n()± (7)

正号为介质对左旋光的折射率,负号为介质对右旋光的折射率。将上式代入(2)式 ,并用波长表示(),则有

(8)

上式表明法拉第旋光角的大小与样品介质厚度S、磁场强度B正比,并且和入射光的波长及介质的色散有关。

若用CGS单位制,则有,

(9)

将(9)式代入(1)式有,

V= (10)

【实验内容】

自搭电路,用集成霍尔原件(UGN3503)测量磁场。

测量励磁电流I与磁场B的之间对应的关系。

分别测量不同的波长、不同的磁场强度下的旋光角度θ。注意:测量时要改变磁场方向。

【数据处理要求】

1、做B-I的曲线图;

2、根据测量数据做不同波长下磁场强度与旋光度的曲线图,即-B图:

3、计算不同波长吓的维尔德常数V:

4、根据上述结果,对实验的结果进行分析,并给出结论。

【实验数据处理】

1、根据测量数据:

0.1A0.2A0.3A0.4A0.5A0.6A0.7A0.8A0.9A1.0A正向电压/V2.4732.5402.617

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值