em算法怎么对应原有分类_EM算法原理

EM算法是一种在有隐变量的情况下求解概率模型参数的最大似然估计方法。它主要分为E-Step(期望步)和M-Step(最大化步)。E-Step通过当前参数估计隐变量的后验概率,M-Step则利用这些后验概率来更新模型参数,如此迭代直至收敛。EM算法在处理未完整数据或存在隐藏变量的数据集时非常有效,常见应用包括聚类和混合模型参数估计。
摘要由CSDN通过智能技术生成

转自:https://www.cnblogs.com/Gabby/p/5344658.html

我讲EM算法的大概流程主要三部分:需要的预备知识、EM算法详解和对EM算法的改进。

一、EM算法的预备知识

1、极大似然估计

(1)举例说明:经典问题——学生身高问题

我们需要调查我们学校的男生和女生的身高分布。 假设你在校园里随便找了100个男生和100个女生。他们共200个人。将他们按照性别划分为两组,然后先统计抽样得到的100个男生的身高。假设他们的身高是服从高斯分布的。但是这个分布的均值u和方差∂2我们不知道,这两个参数就是我们要估计的。记作θ=[u, ∂]T。

问题:我们知道样本所服从的概率分布的模型和一些样本,而不知道该模型中的参数。

我们已知的有两个:(1)样本服从的分布模型(2)随机抽取的样本  需要通过极大似然估计求出的包括:模型的参数

总的来说:极大似然估计就是用来估计模型参数的统计学方法。

(2)如何估计

问题数学化: (1)样本集X={x1,x2,…,xN} N=100 (2)概率密度:p(xi|θ)抽到男生i(的身高)的概率 100个样本之间独立同分布,所以我同时抽到这100个男生的概率就是他们各自概率的乘积。就是从分布是p(x|θ)的总体样本中抽取到这100个样本的概率,也就是样本集X中各个样本的联合概率,用下式表示:

这个概率反映了,在概率密度函数的参数是θ时,得到X这组样本的概率。 需要找到一个参数θ,其对应的似然函数L(θ)最大,也就是说抽到这100个男生(的身高)概率最大。这个叫做θ的最大似然估计量,记为

(3)求最大似然函数估计值的一般步骤

首先,写出似然函数:

其次,对似然函数取对数,并整理:

然后,求导数,令导数为0,得到似然方程;

最后,解似然方程,得到的参数即为所求。

(4)总结

多数情况下我们是根据已知条件来推算结果,而极大似然估计是已经知道了结果,然后寻求使该结果出现的可能性最大的条件,以此作为估计值。

2、Jensen不等式

(1)定义

设f是定义域为实数的函数,如果对于所有的实数x。如果对于所有的实数x,f(x)的二次导数大于等于0,那么f是凸函数。  Jensen不等式表述如下:      如果f是凸函数,X是随机变量,那么:E[f(X)]>=f(E[X])  。当且仅当X是常量时,上式取等号。

(2)举例

图中,实线f是凸函数,X是随机变量,有0.5的概率是a,有0.5的概率是b。X的期望值就是a和b的中值了,图中可以看到E[f(X)]>=f(E[X])成立。         Jensen不等式应用于凹函数时,不等号方向反向。

二、传统EM算法详述

1、问

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值