转自:https://www.cnblogs.com/Gabby/p/5344658.html
我讲EM算法的大概流程主要三部分:需要的预备知识、EM算法详解和对EM算法的改进。
一、EM算法的预备知识
1、极大似然估计
(1)举例说明:经典问题——学生身高问题
我们需要调查我们学校的男生和女生的身高分布。 假设你在校园里随便找了100个男生和100个女生。他们共200个人。将他们按照性别划分为两组,然后先统计抽样得到的100个男生的身高。假设他们的身高是服从高斯分布的。但是这个分布的均值u和方差∂2我们不知道,这两个参数就是我们要估计的。记作θ=[u, ∂]T。
问题:我们知道样本所服从的概率分布的模型和一些样本,而不知道该模型中的参数。
我们已知的有两个:(1)样本服从的分布模型(2)随机抽取的样本 需要通过极大似然估计求出的包括:模型的参数
总的来说:极大似然估计就是用来估计模型参数的统计学方法。
(2)如何估计
问题数学化: (1)样本集X={x1,x2,…,xN} N=100 (2)概率密度:p(xi|θ)抽到男生i(的身高)的概率 100个样本之间独立同分布,所以我同时抽到这100个男生的概率就是他们各自概率的乘积。就是从分布是p(x|θ)的总体样本中抽取到这100个样本的概率,也就是样本集X中各个样本的联合概率,用下式表示:
这个概率反映了,在概率密度函数的参数是θ时,得到X这组样本的概率。 需要找到一个参数θ,其对应的似然函数L(θ)最大,也就是说抽到这100个男生(的身高)概率最大。这个叫做θ的最大似然估计量,记为
(3)求最大似然函数估计值的一般步骤
首先,写出似然函数:
其次,对似然函数取对数,并整理:
然后,求导数,令导数为0,得到似然方程;
最后,解似然方程,得到的参数即为所求。
(4)总结
多数情况下我们是根据已知条件来推算结果,而极大似然估计是已经知道了结果,然后寻求使该结果出现的可能性最大的条件,以此作为估计值。
2、Jensen不等式
(1)定义
设f是定义域为实数的函数,如果对于所有的实数x。如果对于所有的实数x,f(x)的二次导数大于等于0,那么f是凸函数。 Jensen不等式表述如下: 如果f是凸函数,X是随机变量,那么:E[f(X)]>=f(E[X]) 。当且仅当X是常量时,上式取等号。
(2)举例
图中,实线f是凸函数,X是随机变量,有0.5的概率是a,有0.5的概率是b。X的期望值就是a和b的中值了,图中可以看到E[f(X)]>=f(E[X])成立。 Jensen不等式应用于凹函数时,不等号方向反向。
二、传统EM算法详述
1、问