这可以从windows命令行执行:c:\mallet\bin\mallet run
我试过了
^{pr2}$
然后得到一个错误WindowsError: [Error 2] The system cannot find the file specified
我试过了subprocess.call(['c:/mallet/bin/mallet', 'run'])
然后找出错误WindowsError: [Error 193] %1 is not a valid Win32 application
我要传给什么subprocess.call()? 在
为了完整起见,我想传递的完整命令是:bin\mallet run cc.mallet.topics.tui.DMRLoader texts.txt features.txt instance.mallet
我模糊的想法是这是一个预编译的java类,我正在以某种方式调用它,但我并不真正理解我在这里做什么。在
以下是文件夹bin中的两个mallet文件:
mallet.bat@echo off
rem This batch file serves as a wrapper for several
rem MALLET command line tools.
if not "%MALLET_HOME%" == "" goto gotMalletHome
echo MALLET requires an environment variable MALLET_HOME.
goto :eof
:gotMalletHome
set MALLET_CLASSPATH=%MALLET_HOME%\class;%MALLET_HOME%\lib\mallet-deps.jar
set MALLET_MEMORY=1G
set MALLET_ENCODING=UTF-8
set CMD=%1
shift
set CLASS=
if "%CMD%"=="import-dir" set CLASS=cc.mallet.classify.tui.Text2Vectors
if "%CMD%"=="import-file" set CLASS=cc.mallet.classify.tui.Csv2Vectors
if "%CMD%"=="import-smvlight" set CLASS=cc.mallet.classify.tui.SvmLight2Vectors
if "%CMD%"=="train-classifier" set CLASS=cc.mallet.classify.tui.Vectors2Classify
if "%CMD%"=="train-topics" set CLASS=cc.mallet.topics.tui.Vectors2Topics
if "%CMD%"=="infer-topics" set CLASS=cc.mallet.topics.tui.InferTopics
if "%CMD%"=="estimate-topics" set CLASS=cc.mallet.topics.tui.EstimateTopics
if "%CMD%"=="hlda" set CLASS=cc.mallet.topics.tui.HierarchicalLDATUI
if "%CMD%"=="prune" set CLASS=cc.mallet.classify.tui.Vectors2Vectors
if "%CMD%"=="split" set CLASS=cc.mallet.classify.tui.Vectors2Vectors
if "%CMD%"=="bulk-load" set CLASS=cc.mallet.util.BulkLoader
if "%CMD%"=="run" set CLASS=%1 & shift
if not "%CLASS%" == "" goto gotClass
echo Mallet 2.0 commands:
echo import-dir load the contents of a directory into mallet instances (one per file)
echo import-file load a single file into mallet instances (one per line)
echo import-svmlight load a single SVMLight format data file into mallet instances (one per line)
echo train-classifier train a classifier from Mallet data files
echo train-topics train a topic model from Mallet data files
echo infer-topics use a trained topic model to infer topics for new documents
echo estimate-topics estimate the probability of new documents given a trained model
echo hlda train a topic model using Hierarchical LDA
echo prune remove features based on frequency or information gain
echo split divide data into testing, training, and validation portions
echo Include --help with any option for more information
goto :eof
:gotClass
set MALLET_ARGS=
:getArg
if "%1"=="" goto run
set MALLET_ARGS=%MALLET_ARGS% %1
shift
goto getArg
:run
java -Xmx%MALLET_MEMORY% -ea -Dfile.encoding=%MALLET_ENCODING% -classpath %MALLET_CLASSPATH% %CLASS% %MALLET_ARGS%
:eof
和mallet#!/bin/bash
malletdir=`dirname $0`
malletdir=`dirname $malletdir`
cp=$malletdir/class:$malletdir/lib/mallet-deps.jar:$CLASSPATH
#echo $cp
MEMORY=1g
JAVA_COMMAND="java -Xmx$MEMORY -ea -Djava.awt.headless=true -Dfile.encoding=UTF-8 -server -classpath $cp"
CMD=$1
shift
help()
{
cat <
Mallet 2.0 commands:
import-dir load the contents of a directory into mallet instances (one per file)
import-file load a single file into mallet instances (one per line)
import-svmlight load SVMLight format data files into Mallet instances
train-classifier train a classifier from Mallet data files
classify-dir classify data from a single file with a saved classifier
classify-file classify the contents of a directory with a saved classifier
classify-svmlight classify data from a single file in SVMLight format
train-topics train a topic model from Mallet data files
infer-topics use a trained topic model to infer topics for new documents
evaluate-topics estimate the probability of new documents under a trained model
hlda train a topic model using Hierarchical LDA
prune remove features based on frequency or information gain
split divide data into testing, training, and validation portions
Include --help with any option for more information
EOF
}
CLASS=
case $CMD in
import-dir) CLASS=cc.mallet.classify.tui.Text2Vectors;;
import-file) CLASS=cc.mallet.classify.tui.Csv2Vectors;;
import-svmlight) CLASS=cc.mallet.classify.tui.SvmLight2Vectors;;
train-classifier) CLASS=cc.mallet.classify.tui.Vectors2Classify;;
classify-dir) CLASS=cc.mallet.classify.tui.Text2Classify;;
classify-file) CLASS=cc.mallet.classify.tui.Csv2Classify;;
classify-svmlight) CLASS=cc.mallet.classify.tui.SvmLight2Classify;;
train-topics) CLASS=cc.mallet.topics.tui.Vectors2Topics;;
infer-topics) CLASS=cc.mallet.topics.tui.InferTopics;;
evaluate-topics) CLASS=cc.mallet.topics.tui.EvaluateTopics;;
hlda) CLASS=cc.mallet.topics.tui.HierarchicalLDATUI;;
prune) CLASS=cc.mallet.classify.tui.Vectors2Vectors;;
split) CLASS=cc.mallet.classify.tui.Vectors2Vectors;;
bulk-load) CLASS=cc.mallet.util.BulkLoader;;
run) CLASS=$1; shift;;
*) echo "Unrecognized command: $CMD"; help; exit 1;;
esac
$JAVA_COMMAND $CLASS $*