C++求复数的角度_C-34 微分应用—找最大值和最小值

51e75936651b086877bde0b7e29d273d.png

欢迎光临我的专栏《微积分学习之旅》,一起学习,共同提高。

微分学最重要的一类问题是关于最优解的问题。比如下面这样子的:

  1. 如何设置罐头的形状可以让成本最低?
  2. 航天飞机的最大加速度是多少?(这影响到飞行员能承受的加速度的极限)
  3. 咳嗽时,器官收缩到多大半径可以使得排气最快?
  4. 血管以多大角度分叉,可以让心脏泵血消耗最少的能量?

这些问题可以被归结为求函数的最大值或最小值的问题。那么,在数学上怎么定义最大值和最小值呢?

极大值与极小值的定义

如果对于函数

定义域内的任意自变量
,都满足
,那么
就是
绝对极大值(最大值)

如果对于函数

定义域内的任意自变量
,都满足
,那么
就是
绝对极小值(最小值)

最大值或最小值有时候又被称为全局最值整体最值

不过有时候我们还会讨论一个函数在某一点附近内的极值问题,也就是所谓的局部极大值和局部极小值。数学上怎么定义呢?

如果函数在c点附近,有

,那么
就是
局部极大值;

如果函数在c点附近,有

,那么
就是
局部极小值。

如下图所示。

f1836f743f92ba7e367cf0759832891c.png

在a点是局部极小值,同时也是全局极小值;在d点是局部极大值,同时也是全局极大值;在c和e两点是局部极小值;在b点是局部极大值。

最值定理

表述:如果函数在闭区间上连续,那么这个函数一定在这个闭区间内有最大值和最小值。

这个定理挺好理解,就跟常识一样。如下图所示。

081c9d65a8846f360b164103d4a20670.png

但是,如果函数忽略了最值定理中的两个前提(闭区间、连续函数),就不一定有最值,比如下面这两个图例。

f714beee0d60d094bc2536c1dc570980.png

左边这个函数没有最大值,是因为它不是连续函数。右边这个没有最大值和最小值,是因为它是开区间。

如何找到极大值和极小值呢?

观察下面的图像,你会发现什么?

2fdeb1f04ac99326377177deddc982c6.png

相信你已经看到了,函数f 在c,d两点有极大值和极小值,它们的切线刚好水平,换句话说,极大值和极小值对应的切线的斜率是0,而导数恰恰就是切线的斜率。因此,这就给我们带来了寻找极值的方法。

费马引理

表述:如果函数

在c点有局部极大值或局部极小值,且该点的导数存在,那么

要注意的是,并不是说有了费马引理,我们就可以肆无忌惮地利用它去寻找极值,过度解读费马引理是不对的,比如下面两个例子。

2a9fe2b32cd274bc6dc547eb6de2a9d8.png

左边这个函数虽然在x=0处的导数等于0,但是此处并没有极值;右边函数虽然在x=0处有极值,但是x=0处导数不存在。

既然如此,费马引理有什么用呢?它告诉我们在找极值的时候,至少先要考察一下c点的导数(不论这个导数是等于0,还是不存在)。

临界点:若函数定义域内某点处的导数等于0或不存在,或者在该点有极值,则称该点为临界点。

例1 找处函数

的临界点。

由导数可知,当

时导数等于0;当
时导数不存在。

所以临界点为

,以及

闭区间连续函数的最值求法

通过上面的分析,我们意识到,连续函数的最值要么出现在闭区间的端点上,要么出现在局部极值上。

所以,为了求连续函数在闭区间[a,b]内的最值,一般会进行下面三个步骤

  1. 寻找函数在开区间(a,b)内的临界点的函数值;
  2. 寻找函数在区间端点处的函数值;
  3. 比较步骤1和步骤2中得到的函数值,就有最大值和最小值了。

例2 求下列函数的最值。

第一步:求导找临界点的函数值

第二步:找端点函数值

第三步:比较一、二步的结果得到

函数的最大值为17,函数的最小值为-3。


专栏链接:

Mr.Xiong:专栏目录-《微积分学习之旅》​zhuanlan.zhihu.com
cb42a9d2fdcb133d2a58b1ff6777fa34.png
Mr.Xiong:A-00 微积分学习再出发(一点说明)​zhuanlan.zhihu.com
d732648e813a6d17072ca8a330adeb36.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值