欢迎光临我的专栏《微积分学习之旅》,一起学习,共同提高。
微分学最重要的一类问题是关于最优解的问题。比如下面这样子的:
- 如何设置罐头的形状可以让成本最低?
- 航天飞机的最大加速度是多少?(这影响到飞行员能承受的加速度的极限)
- 咳嗽时,器官收缩到多大半径可以使得排气最快?
- 血管以多大角度分叉,可以让心脏泵血消耗最少的能量?
这些问题可以被归结为求函数的最大值或最小值的问题。那么,在数学上怎么定义最大值和最小值呢?
极大值与极小值的定义
如果对于函数
如果对于函数
最大值或最小值有时候又被称为全局最值或整体最值。
不过有时候我们还会讨论一个函数在某一点附近内的极值问题,也就是所谓的局部极大值和局部极小值。数学上怎么定义呢?
如果函数在c点附近,有
如果函数在c点附近,有
如下图所示。
在a点是局部极小值,同时也是全局极小值;在d点是局部极大值,同时也是全局极大值;在c和e两点是局部极小值;在b点是局部极大值。
最值定理
表述:如果函数在闭区间上连续,那么这个函数一定在这个闭区间内有最大值和最小值。
这个定理挺好理解,就跟常识一样。如下图所示。
但是,如果函数忽略了最值定理中的两个前提(闭区间、连续函数),就不一定有最值,比如下面这两个图例。
左边这个函数没有最大值,是因为它不是连续函数。右边这个没有最大值和最小值,是因为它是开区间。
如何找到极大值和极小值呢?
观察下面的图像,你会发现什么?
相信你已经看到了,函数f 在c,d两点有极大值和极小值,它们的切线刚好水平,换句话说,极大值和极小值对应的切线的斜率是0,而导数恰恰就是切线的斜率。因此,这就给我们带来了寻找极值的方法。
费马引理
表述:如果函数
要注意的是,并不是说有了费马引理,我们就可以肆无忌惮地利用它去寻找极值,过度解读费马引理是不对的,比如下面两个例子。
左边这个函数虽然在x=0处的导数等于0,但是此处并没有极值;右边函数虽然在x=0处有极值,但是x=0处导数不存在。
既然如此,费马引理有什么用呢?它告诉我们在找极值的时候,至少先要考察一下c点的导数(不论这个导数是等于0,还是不存在)。
临界点:若函数定义域内某点处的导数等于0或不存在,或者在该点有极值,则称该点为临界点。
例1 找处函数
解
由导数可知,当
所以临界点为
闭区间连续函数的最值求法
通过上面的分析,我们意识到,连续函数的最值要么出现在闭区间的端点上,要么出现在局部极值上。
所以,为了求连续函数在闭区间[a,b]内的最值,一般会进行下面三个步骤:
- 寻找函数在开区间(a,b)内的临界点的函数值;
- 寻找函数在区间端点处的函数值;
- 比较步骤1和步骤2中得到的函数值,就有最大值和最小值了。
例2 求下列函数的最值。
解
第一步:求导找临界点的函数值
第二步:找端点函数值
第三步:比较一、二步的结果得到
函数的最大值为17,函数的最小值为-3。
专栏链接:
Mr.Xiong:专栏目录-《微积分学习之旅》zhuanlan.zhihu.com