微积分-微分应用1(最大值和最小值)

最大值和最小值

在这里插入图片描述
我们看到图中函数 f f f 的图像上的最高点是点 ( 3 , 5 ) (3, 5) (3,5)。换句话说, f f f 的最大值是 f ( 3 ) = 5 f(3) = 5 f(3)=5。同样,最小值是 f ( 6 ) = 2 f(6) = 2 f(6)=2。我们说 f ( 3 ) = 5 f(3) = 5 f(3)=5 f f f 的绝对最大值, f ( 6 ) = 2 f(6) = 2 f(6)=2 是绝对最小值。一般来说,我们使用以下定义。

1 定义

c c c 是函数 f f f 的定义域 D D D 中的一个数。那么 f ( c ) f(c) f(c)

  • 绝对最大值 如果 f ( c ) ≥ f ( x ) f(c) \geq f(x) f(c)f(x) 对于所有 x ∈ D x \in D xD
  • 绝对最小值 如果 f ( c ) ≤ f ( x ) f(c) \leq f(x) f(c)f(x) 对于所有 x ∈ D x \in D xD

绝对最大值或最小值有时也称为全局最大值或最小值。 f f f 的最大值和最小值统称为 f f f 的极值。
在这里插入图片描述

图中显示了具有绝对最大值在 d d d 处和绝对最小值在 a a a 处的函数 f f f 的图像。注意, ( d , f ( d ) ) (d, f(d)) (d,f(d)) 是图上的最高点,而 ( a , f ( a ) ) (a, f(a)) (a,f(a)) 是最低点。在图中,如果我们只考虑 x x x b b b 附近的值(例如,如果我们将注意力集中在区间 ( a , c ) (a, c) (a,c) 上),那么 f ( b ) f(b) f(b) 是这些 f ( x ) f(x) f(x) 值中的最大值,称为局部最大值。同样, f ( c ) f(c) f(c) 被称为局部最小值,因为对于 x x x c c c(在区间 ( b , d ) (b, d) (b,d) 内)的情况, f ( c ) ≤ f ( x ) f(c) \leq f(x) f(c)f(x)。函数 f f f 也在 e e e 处具有局部最小值。一般来说,我们有以下定义。

2 定义

这个数 f ( c ) f(c) f(c)

  • 局部最大值 如果 f ( c ) ≥ f ( x ) f(c) \geq f(x) f(c)f(x) x x x c c c 附近时。
  • 局部最小值 如果 f ( c ) ≤ f ( x ) f(c) \leq f(x) f(c)f(x) x x x c c c 附近时。

例子1 函数 f ( x ) = cos ⁡ x f(x) = \cos x f(x)=cosx 的(局部和绝对)最大值为 1,它无限多次取值;同理,它的(局部和绝对)最小值为 − 1 -1 1
在这里插入图片描述
例子2 如果 f ( x ) = x 2 f(x) = x^2 f(x)=x2,则 f ( x ) ≥ f ( 0 ) f(x) \geq f(0) f(x)f(0) 因为 x 2 ≥ 0 x^2 \geq 0 x20 对于所有 x x x 成立。因此 f ( 0 ) = 0 f(0) = 0 f(0)=0 f f f 的绝对(和局部)最小值。这对应于抛物线 y = x 2 y = x^2 y=x2 上的原点是最低点的事实。(见图)。然而,抛物线上没有最高点,因此此函数没有最大值。
在这里插入图片描述
例子3 从函数 f ( x ) = x 3 f(x) = x^3 f(x)=x3 的图形(见图)中可以看出,该函数既没有绝对最大值也没有绝对最小值。事实上,它也没有局部极值。
在这里插入图片描述

例子4 函数

f ( x ) = 3 x 4 − 16 x 3 + 18 x 2 − 1 ≤ x ≤ 4 f(x) = 3x^4 - 16x^3 + 18x^2 \quad -1 \leq x \leq 4 f(x)=3x416x3+18x21x4

的图形见图。你可以看到 f ( 1 ) = 5 f(1) = 5 f(1)=5 是局部最大值,而绝对最大值是 f ( − 1 ) = 37 f(-1) = 37 f(1)=37。(这个绝对最大值不是局部最大值,因为它发生在一个端点)。此外, f ( 0 ) = 0 f(0) = 0 f(0)=0 是局部最小值, f ( 3 ) = − 27 f(3) = -27 f(3)=27 是局部和绝对最小值。注意到 f f f x = 4 x = 4 x=4 处既没有局部也没有绝对最大值。
在这里插入图片描述

极值定理

3 极值定理

如果函数 f f f 在闭区间 [ a , b ] [a, b] [a,b] 上连续,则函数 f f f 在某些数 c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值