Constant dripping wears the stone

stay hungry, stay foolish.
私信 关注
datamonday
码龄4年

只分享干货,不制造焦虑!

  • 295,069
    被访问量
  • 382
    原创文章
  • 4,913
    作者排名
  • 1,049
    粉丝数量
  • 于 2017-07-28 加入CSDN
获得成就
  • 博客专家认证
  • 获得1,291次点赞
  • 内容获得562次评论
  • 获得5,229次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #Python#视觉/OpenCV#TensorFlow#深度学习#算法#机器学习#NLP#PyTorch#数据分析
TA的专栏
  • 论文学习(Paper)
    65篇
  • 优化算法(Optimization)
    8篇
  • 可解释性AI(Explainable AI)
    7篇
  • AutoML
    3篇
  • 类脑计算
    1篇
  • 机器学习(Machine Learning)
    83篇
  • 深度学习(Deep Learning)
    39篇
  • 强化学习(Reinforcement Learning)
    6篇
  • 数据挖掘(Data Mining)
    38篇
  • 无监督学习(Unsupervised)
    13篇
  • 自监督学习(Self-Supervised)
    2篇
  • 生成式对抗网络(GAN)
    2篇
  • 图神经网络(GNN)
    2篇
  • 时间序列建模(Time Series)
    42篇
  • 自然语言处理(NLP)
    27篇
  • 目标检测(Object Detection)
    21篇
  • 人脸识别(Face Recognition)
    3篇
  • 自动驾驶(Self-driving)
    1篇
  • 生物医学影像(Biomedical image)
  • TensorFlow & Keras
    33篇
  • PyTorch
    19篇
  • 神经架构搜索(NAS)
    2篇
  • 人类活动识别(HAR)
    18篇
  • 车辆驾驶行为识别(VDBR)
    5篇
  • Python
    23篇
  • C/C++
    1篇
  • Ubuntu & Git
    7篇
  • Matplotlib & Seaborn
    12篇
  • Pandas & NumPy
    9篇
  • 多模态表征(MR)
    2篇
我的微信公众号

  • 人工智能资讯、前沿进展、论文教程等
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

15种分类变量编码方法

机器学习问题建模中,15种分类变量编码方法。
翻译
84阅读
0评论
0点赞
发布博客于 16 天前

使用AutoEncoder进行异常检测

自动编码器介绍,以及使用Keras实现的三个用例。
原创
37阅读
0评论
0点赞
发布博客于 22 天前

Matplotlib 将图片保存为 .tiff 格式

sci论文绘图
原创
97阅读
0评论
0点赞
发布博客于 26 天前

牛津英文词典OED中常用缩写规范

牛津词典英文缩写规范汇总
原创
76阅读
0评论
0点赞
发布博客于 28 天前

Windows系统实现matplotlib显示LaTex字体

Windows系统实现matplotlib显示LaTex字体解决方法。
原创
45阅读
0评论
0点赞
发布博客于 29 天前

100句地道的英语俚语

100句地道的英语俚语(含例句)
原创
427阅读
0评论
0点赞
发布博客于 2 月前

深度学习中的归一化方法概述

9 种 归一化(Normalization)方法概述
原创
56阅读
0评论
0点赞
发布博客于 2 月前

RL02: Q-Learning, create an autonomous Taxi (Part 2/2)

强化学习算法:Q-Learning Part II。
翻译
11阅读
0评论
0点赞
发布博客于 2 月前

RL02: Q-Learning, create an autonomous Taxi (Part 1/2)

强化学习算法:Q-Learning Part I。价值函数,价值-动作对函数,贝尔曼方程,蒙特卡洛搜索,时间差分学习。
翻译
19阅读
0评论
0点赞
发布博客于 2 月前

BERT Explained: State of the art language model for NLP

自然语言处理(NLP)模型——BERT 解释。
翻译
33阅读
0评论
0点赞
发布博客于 2 月前

RL01: An Introduction to Deep Reinforcement Learning

强化学习课程 01:深度强化学习简介
翻译
43阅读
0评论
0点赞
发布博客于 2 月前

CS231N 10:Lecture 9 Notes

9 种 CNN 经典架构笔记
原创
28阅读
0评论
0点赞
发布博客于 2 月前

CS231N 09:Lecture 08 Notes

CS231N 训练神经网络中的配置:梯度检查、学习过程、调参评估。
原创
34阅读
0评论
0点赞
发布博客于 2 月前

CS231N 08:Lecture 7 Notes

CS231N:神经网络的数据预处理、权重初始化、正则化、损失函数笔记。
原创
27阅读
0评论
0点赞
发布博客于 2 月前

CS231N 07:Lecture 7 Notes

CS231N 神经网络、激活函数笔记
原创
46阅读
0评论
0点赞
发布博客于 2 月前

CS231N 06:Lecture 5 Notes

CS231N 卷积神经网络笔记
原创
52阅读
0评论
0点赞
发布博客于 2 月前

强化学习相关资源汇总

强化学习(Reinforcement Learning)相关资源汇总
原创
66阅读
0评论
0点赞
发布博客于 2 月前

CS231N 05:Lecture 4 Notes

CS231N 反向传播、激活函数笔记
原创
22阅读
0评论
0点赞
发布博客于 2 月前

CS231N 04:Lecture 3 Notes

CS231N 优化算法笔记
原创
21阅读
0评论
0点赞
发布博客于 2 月前

可解释性AI/ML(XAL,IML)相关资源汇总

可解释性机器学习(IML)、可解释性人工智能(XAI)相关资源汇总
原创
65阅读
0评论
0点赞
发布博客于 2 月前

类脑计算与脑机接口相关资源汇总

类脑计算、脑机接口相关研究进展资源汇总
原创
52阅读
0评论
0点赞
发布博客于 2 月前

CS231N 03:Lecture 3 Notes

CS231N 损失函数和正则化笔记
原创
22阅读
0评论
0点赞
发布博客于 2 月前

CS231N 02:Lecture 1 and 2 Notes

CS231N 图像分类和线性分类器笔记
原创
37阅读
0评论
0点赞
发布博客于 2 月前

CS231N 01:Python Numpy Tutorial

CS231N Python Numpy教程笔记
原创
31阅读
0评论
0点赞
发布博客于 2 月前

【Paper】Forecasting seasonals and trends by exponentially weighted moving averages

指数加权移动平均(exponentially weighted moving averages, EWM)原始论文;论文被引:1994(2020/12/25)
原创
60阅读
0评论
0点赞
发布博客于 2 月前

【Paper】Comparative Study on EWMA Approaches for the Self-Starting Forecasting

指数加权移动平均(Exponentially Weighted Moving Average,EWMA)时间序列预测相关论文。
原创
72阅读
0评论
0点赞
发布博客于 2 月前

时间序列分析:使用Pandas探索能源数据集

使用Pandas进行时间序列分析教程
翻译
177阅读
0评论
0点赞
发布博客于 2 月前

Python Data Visualization with Matplotlib — Part 2

matplotlib绘图教程:箱形图,小提琴图,饼图,极坐标图,地理投影,3D图和轮廓图。
翻译
52阅读
0评论
0点赞
发布博客于 2 月前

Python Data Visualization with Matplotlib — Part 1

Matplotlib绘图教程:散点图,折线图,直方图和条形图。
翻译
52阅读
0评论
1点赞
发布博客于 2 月前

5 Powerful Tricks to Visualize Your Data with Matplotlib

5个matplotlib使用技巧:LaTex字体,放大图效果,修改图例显示,连续误差图,调整边距。
翻译
40阅读
0评论
0点赞
发布博客于 2 月前

Partial Dependence Plot (PDP)

Interpretable Machine Learning(4)——偏相关图 (PDP)
翻译
169阅读
5评论
0点赞
发布博客于 2 月前

Permutation Feature Importance

Interpretable Machine Learning(3)——Permutation Feature Importance
翻译
136阅读
0评论
0点赞
发布博客于 2 月前

SHAP (SHapley Additive exPlanations)

Interpretable Machine Learning(2)——SHAP
翻译
467阅读
0评论
0点赞
发布博客于 2 月前

Shapley Values

Interpretable Machine Learning(1)——Shapley Values
翻译
65阅读
0评论
0点赞
发布博客于 2 月前

模型超参数优化与AutoML

超参数优化与自动化机器学习相关。
原创
67阅读
0评论
0点赞
发布博客于 3 月前

Characteristics of time series data

时间序列建模需要考虑的四个因素。
翻译
52阅读
0评论
0点赞
发布博客于 3 月前

Time series cross-validation

时间序列交叉验证
翻译
120阅读
0评论
0点赞
发布博客于 3 月前

How to use K-fold Cross Validation with Keras?

在Keras中使用交叉验证。
翻译
190阅读
0评论
0点赞
发布博客于 3 月前

Use Keras Models with Scikit-Learn Cross Validation

使用sklearn实现keras模型的交叉验证(CV)。并介绍了sklearn中不同交叉验证类的区别。
原创
32阅读
0评论
0点赞
发布博客于 3 月前

RF vs XGBoost vs CatBoost vs GBM vs LightGBM Tutorial and Code Blog

随机森林,XGBoost和LightGBM教程资源汇总。
原创
40阅读
0评论
0点赞
发布博客于 3 月前

Good summary of XGBoost vs CatBoost vs LightGBM

XGBoost vs CatBoost vs LightGBM 算法对比相关资源
原创
32阅读
0评论
0点赞
发布博客于 3 月前

自然语言处理(NLP)必读论文、课程、术语汇总

自然语言处理必读论文及相关术语汇总
原创
80阅读
0评论
1点赞
发布博客于 3 月前

A Simple Example of Pipeline in Machine Learning with Scikit-learn

使用红酒品质分类数据集,介绍了在sklearn中构建pipeline的过程。
翻译
29阅读
0评论
0点赞
发布博客于 3 月前

Global Model Interpretability Techniques for Black Box Models

黑盒模型中特征的可解释性方法介绍。
翻译
67阅读
0评论
0点赞
发布博客于 3 月前

Feature Selection Techniques in Machine Learning

三大类传统的机器学习特征选择介绍及sklearn实现。
翻译
48阅读
0评论
0点赞
发布博客于 3 月前

How to Perform Feature Selection for Regression Data

基于相关统计和互信息统计的特征选择方法。
翻译
51阅读
0评论
1点赞
发布博客于 3 月前

Explain Your Model with the SHAP Values

SHAP Value详解,以及一些系列文章。
翻译
171阅读
0评论
0点赞
发布博客于 3 月前

XGBoost Feature Importance Computed in 3 Ways with Python

通过回归任务介绍了 XGBoost 特征重要性计算(包括SHAP)
翻译
63阅读
0评论
1点赞
发布博客于 3 月前

Feature selection in machine learning

机器学习中的特征选择方法介绍
翻译
43阅读
0评论
0点赞
发布博客于 3 月前

Boruta:An all relevant feature selection method based on Random Forest estimators

特征选择方法 Boruta 介绍。
翻译
58阅读
0评论
0点赞
发布博客于 3 月前

Boruta:one of the most effective feature selection algorithms

特征选择方法 Boruta 介绍。
翻译
62阅读
0评论
0点赞
发布博客于 3 月前

Feature Selection: Beyond feature importance?

3种机器学习模型特征选择方法介绍。
翻译
46阅读
0评论
0点赞
发布博客于 3 月前

What Exactly Is Happening Inside the Transformer

Transformer 代码解释
翻译
78阅读
0评论
0点赞
发布博客于 3 月前

10 Stochastic Gradient Descent Optimisation Algorithms

10种随机梯度下降优化算法概述
翻译
38阅读
0评论
0点赞
发布博客于 3 月前

Illustrated Self-Attention

以动图的方式介绍了自注意力机制的工作原理。
翻译
58阅读
0评论
0点赞
发布博客于 3 月前

图解 RNN, LSTM, GRU

动图逐步演示RNN(RNN,LSTM,GRU)的工作流程。
原创
137阅读
0评论
0点赞
发布博客于 3 月前

Paper:Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

Cho机器翻译论文(RNN Seq2Seq)。论文被引:11398(2020/11/08);论文年份:2014。
原创
121阅读
0评论
0点赞
发布博客于 3 月前

Paper:Effective Approaches to Attention-based Neural Machine Translation

Luong注意力机制论文。论文被引:4675(2020/11/08);论文年份:2015。
原创
98阅读
0评论
0点赞
发布博客于 3 月前

Paper:Neural Machine Translation by Jointly Learning to Align and Translate

Bahdanau注意力机制论文。论文被引:14978(2020/11/07);论文年份:2014。
原创
158阅读
0评论
0点赞
发布博客于 3 月前

Paper:Sequence to Sequence Learning with Neural Networks

Seq2Seq 模型论文。论文被引:12780(2020/11/07);论文年份:NIPS 2014。
原创
107阅读
0评论
0点赞
发布博客于 3 月前

Illustrated Attention

以机器翻译为例图解注意力机制(Attention Mechanism),主要介绍了全局注意力(Global Attention)机制。
翻译
63阅读
0评论
1点赞
发布博客于 3 月前

【神经网络知识点01】 1.定义:神经网络是具有适应性的简单单元组成的广泛并行互联的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 2.感知机(Perceptron)由两层神经元组成,可以实现逻辑与、或、非运算,无法完成异或运算,即只能处理线性可分的问题。要想解决异或运算等非线性问题,可通过多层前馈神经网络解决。“前馈”并不意味着网络中的信号不能向后传,而是指网络拓扑结构上不存在环或回路。 3.读取训练集一遍称为进行了“一轮”(one round or one epoch)学习。 4.神经网络学到的东西,蕴含在连接权和阈值中。标准的BP算法每次只针对一个训练样本更新连接权和阈值。累计BP则针对累计误差最小化,它在读取整个训练集一遍后才对参数进行更新。标准BP与累计BP算法的区别类似于GD与SGD之间的区别。 5.增量学习(incremental learning)是指在学得模型后,再接收到训练样本时,仅根据新样本对模型进行更新,不必重新训练整个模型,并且先前学习到的有效信息不会被“冲掉”;在线学习(online learning)是指每次获得一个样本就进行一次模型更新。显然,在线学习是增量学习的特例,而增量学习可以视为“批模式”(batch-mode)的在线学习。 6.径向基函数(RBF)网络是一种单隐层前馈神经网络,使用RBF作为隐层的激活函数,具有足够多的隐层的RBF网络能够以任意精度逼近任意连接函数。 7.竞争学习是一种常用的无监督学习策略。常用的竞争神经网络有ART、SOM。 8.其它的神经网络有级联相关网络,递归神经网络,Boltzman机等。

 
发布Blink于 4 月前

How LSTMs Work?

LSTM详解,包括原理和源码实现。
原创
99阅读
1评论
1点赞
发布博客于 4 月前

Learning to Learn

Learning to Learn 包括小样本学习(Few-Slot Learning)、元学习(Meta Learning)等。
翻译
55阅读
0评论
0点赞
发布博客于 4 月前

自监督学习概述

自监督学习(self-supervised learning)概述。
翻译
347阅读
1评论
0点赞
发布博客于 4 月前

注意力机制概述

注意力机制(Attention Mechanism)概述。
翻译
188阅读
0评论
2点赞
发布博客于 4 月前

图解 Attention

图解注意力机制(Attention Mechanism)。
翻译
149阅读
0评论
1点赞
发布博客于 4 月前

A brief introduction to weakly supervised learning

弱监督学习(Weakly Supervised Learning)综述论文。
原创
78阅读
1评论
0点赞
发布博客于 4 月前

联邦学习简介

联邦学习(Federated Learning)简介。
翻译
140阅读
2评论
0点赞
发布博客于 4 月前

小样本学习简介

小样本学习(Few-Shot Learning)简介。
翻译
303阅读
0评论
0点赞
发布博客于 4 月前

An Overview of Multi-Task Learning in Deep Neural Networks

多任务学习(Multi-Task Learning)综述论文。
原创
98阅读
0评论
0点赞
发布博客于 4 月前

元学习简介

元学习(Meta-learning)简介。
翻译
90阅读
0评论
0点赞
发布博客于 4 月前

自监督学习简介

自监督学习(Self-Supervised Learning)简介。
原创
84阅读
0评论
0点赞
发布博客于 4 月前

主动学习简介

主动学习(Active Learning)简介。
原创
139阅读
0评论
0点赞
发布博客于 4 月前

半监督学习简介

半监督学习(Semi-Supervised Learning)简介
原创
61阅读
0评论
0点赞
发布博客于 4 月前

强化学习术语表(A-Z)

强化学习(Reinforcement Learning)相关的术语解释总结。
翻译
191阅读
0评论
0点赞
发布博客于 4 月前

强化学习需要了解的5件事

关于强化学习(Reinforcement Learning)需要了解的5件事
翻译
45阅读
0评论
0点赞
发布博客于 4 月前

机器学习中贝叶斯超参数优化简介

机器学习中贝叶斯超参数优化的概念解释
翻译
134阅读
0评论
2点赞
发布博客于 4 月前

粒子群优化算法简介

粒子群优化算法(Particle Swarm Optimization,PSO)简介。
原创
70阅读
0评论
1点赞
发布博客于 4 月前

模拟退火算法简介

模拟退火(Simulated Annealing)算法简介。
原创
107阅读
0评论
0点赞
发布博客于 4 月前

贝叶斯优化简介

贝叶斯优化(Bayesian optimization)简介。
翻译
75阅读
0评论
0点赞
发布博客于 4 月前

知识蒸馏简介

知识蒸馏(Knowledge Distillation)简介。
翻译
52阅读
0评论
0点赞
发布博客于 4 月前

深度学习模型压缩方法概述

5种深度学习模型压缩方法简介。
翻译
126阅读
0评论
1点赞
发布博客于 4 月前

模型剪枝简介

深度神经网络剪枝(Pruning Deep Neural Networks)简介。
翻译
139阅读
0评论
0点赞
发布博客于 4 月前

波束搜索算法的直观解释

波束搜索(Beam Search)算法简介。
翻译
468阅读
4评论
0点赞
发布博客于 4 月前

图解 Transformer

注意力机制 Transformer 详解。
翻译
143阅读
0评论
1点赞
发布博客于 4 月前

How Transformers Work

注意力机制 Transformers 工作原理介绍。
翻译
114阅读
0评论
0点赞
发布博客于 4 月前

神经架构搜索(NAS)简介

AutoML 和 Neural Architecture Search 简介。
翻译
79阅读
0评论
0点赞
发布博客于 4 月前

神经架构搜索(NAS)基础

神经架构搜索(Neural Architecture Search)基础
翻译
73阅读
0评论
0点赞
发布博客于 4 月前

图神经网络(GNN)简介

图神经网络的简要介绍
翻译
93阅读
0评论
0点赞
发布博客于 4 月前

图神经网络(GNN)分析结构化数据简介

图神经网络(GNN)用于分析结构化数据的简介
翻译
189阅读
0评论
0点赞
发布博客于 4 月前

隐马尔可夫模型(HMM)简介

隐马尔可夫模型介绍
翻译
93阅读
0评论
0点赞
发布博客于 4 月前

马尔可夫链和隐马尔可夫模型简介

马尔可夫链和隐马尔可夫模型简介
翻译
157阅读
0评论
0点赞
发布博客于 4 月前

马尔可夫链简介

马尔可夫链(Markov Chains)简介。
翻译
122阅读
0评论
0点赞
发布博客于 4 月前

生成式对抗网络(GAN)简介

循序渐进介绍生成式对抗网络(GANs),包含数学推导。
翻译
140阅读
0评论
0点赞
发布博客于 4 月前

图解 Word2Vec

Word2Vec 详细介绍。
翻译
48阅读
0评论
0点赞
发布博客于 4 月前

Word2Vec 简介

Word Embedding 和 Word2Vec 简介
翻译
49阅读
0评论
0点赞
发布博客于 4 月前

神经网络嵌入解释

神经网络嵌入(Neural Network Embeddings)解释。
翻译
116阅读
0评论
0点赞
发布博客于 4 月前