【注意】如果寻找分词和文本分析软件,为了完成内容分析和其他文本研究任务,直接使用集搜客分词和文本分析软件就可以了。本文是为了讲解集搜客分词和文本分析的实现原理,是给产品设计者和开发者看的。
最近在整理自然语言处理的相关知识图谱,关于中文分词这块,我们梳理了一些入门的知识点,并且整理汇总了一些常用的分词工具、词云图工具,觉得有用的可以收藏一下。
1.分词难点
1.1.有多种分词标准,不同的分词标准会对下游结果产生影响
1.2.如何识别未登录词 OOV
1.3. 歧义
组合型歧义;
交集型歧义;
真歧义;
2.分词方法
2.1.基于词典(字符串匹配分词算法)
(1)正向最大匹配法 FMM:对文本从左至右切出最长的词
(2)逆向最大匹配法 BMM:对文本从右至左切出最长的词
(3)N-最短路径方法
(4)双向匹配分词法:由左到右、由右到左两次扫描
缺点:对歧义和未登录词处理不好。
2.2.机器学习
(1)隐马尔科夫模型 HMM
(2)条件随机场模型 CRF
(3)最大熵模型 ME
(4)N元文法模型 N-gram
(5)支持向量机 SVM
(6)深度学习基于神经网络的分词器
textCNN
序列到序列模型 seq2seq
注意力机制 Attention Mechanism
BERT模型
缺点:训练集需要大量人工标注语料、整理统计特征。
优点:不仅考虑词频,还考虑上下文,可有效消除歧义、识别未登录词。
2.3.其他
(1)词向量转换/特征降维
词嵌入 Word2Vec连续词袋模型 CBOW
Skip-gram
子词嵌入 FastText
全局向量词嵌入 GloVe
(2)TF-IDF
TF 表示某个词语在一个语料中出现的频次;DF 表示在全部语料中,共有多少个语料出现了这个词,IDF 是DF的倒数(取log);TF- IDF 越大,表示这个词越重要。
常用于关键词提取。
(3)TextRank
根据词语之间的邻近关系构建网络,通过PageRank迭代计算出词语的排名;
常用于关键词提取、自动摘要提取。
3.分词工具
3.1.开源或免费
(1)Hanlp分词器
https://github.com/hankcs/HanLP
最短路径分词,有中文分词、词性标注、新词识别、命名实体识别、自动摘要、文本聚类、情感分析、词向量word2vec等功能,支持自定义词典;
采用HMM、CRF、TextRank、word2vec、聚类、神经网络等算法;
支持Java,C++,Python语言;
(2)结巴分词
https://github.com/yanyiwu/cppjieba
找出基于词频的最大切分组合,有中文分词、关键词提取、词性标注功能,支持自定义词典;
采用HMM模型、 Viterbi算法;
支持Java,C++,Python语言;
(3)哈工大的LTP
https://github.com/HIT-SCIR/ltp
有中文分词、词性标注、句法分析等功能;
商用需付费;调用接口,每秒请求的次数有限制;
编写语言有C++、Python、Java版;
(4)清华大学THULAC
https://github.com/thunlp/THULAC
有中文分词、词性标注功能;
有Java、Python和C++版本;
(5)北京大学 pkuseg
https://github.com/lancopku/PKUSeg-python
支持按领域分词、有词性标注功能、支持用户自训练模型;
基于CRF模型、自研的ADF训练方法;
有python版本;
(6)斯坦福分词器
https://nlp.stanford.edu/software/segmenter.shtml
支持多语言分词包括中英文,提供训练模型接口,也可用已有模型,但速度较慢;
Java实现的CRF算法;
(7)KCWS分词器
https://github.com/koth/kcws
有中文分词、词性标注功能,支持自定义词典;
采用word2vec、Bi-LSTM、CRF算法;
(8)ZPar
https://github.com/frcchang/zpar/releases
有中文、英文、西班牙语分词、词性标注;
C++语言编写;
(9)IKAnalyzer
https://github.com/wks/ik-analyzer
有中文分词功能,支持自定义词典;
(10)Jcseg
https://gitee.com/lionsoul/jcseg
有中文分词、关键词提取、自动摘要、词性标注、实体识别等功能,支持自定义词典;
基于mmseg、textRank、BM25等算法;
(11)FudanNLP
https://github.com/FudanNLP/fnlp
中文分词 词性标注 实体名识别 关键词抽取等;
(12)SnowNLP
https://github.com/isnowfy/snownlp
有中文分词、词性标注、情感分析、文本分类、提取关键词等功能;
基于HMM、Naive Bayes、TextRank、tf-idf等算法;
Python类库;
(13)ansj分词器
https://github.com/NLPchina/ansj_seg
有中文分词、人名识别、词性标注、用户自定义词典等功能;
基于n-Gram+CRF+HMM算法;
(14)NLTK
https://github.com/nltk/nltk
擅长英文分词,也支持中文分词处理,但建议先用其他分词工具对中文语料分词,再用它的处理功能;
python库;
(15)庖丁解牛
https://code.google.com/p/paoding
3.2.其他
(1)中科院计算所NLPIR
http://ictclas.nlpir.org/nlpir
具有分词、词性标注、新词识别、命名实体识别、情感分析、关键词提取等功能,支持自定义词典;
(2)腾讯文智
nlp.qq.com/semantic.cgi
(3)BosonNLP
https://bosonnlp.com/dev/center
(4)百度NLP
https://cloud.baidu.com/doc/NLP/NLP-API.html
(5)阿里云NLP
https://data.aliyun.com/product/nlp
(6)新浪云
https://www.sinacloud.com/doc/sae/python/segment.html
(7)盘古分词
https://archive.codeplex.com/?p=pangusegment
具有中英文分词功能,支持自定义词典;
4.词云图制作工具
(1)Wordart
https://wordart.com
(2)Tagul
https://tagul.com
(3)Wordle
http://www.wordle.net
(4)WordItOut
http://worditout.com
(5)Tagxedo
http://www.tagxedo.com
(6)Tocloud
http://www.tocloud.com
(7)图悦
http://www.picdata.cn
(8)office的PPT插件Pro Word Cloud
(9)BDP个人版
参考资料:
https://www.zhihu.com/question/19578687/answer/190569700
https://zhuanlan.zhihu.com/p/64409753
https://zhuanlan.zhihu.com/p/33261835
https://zhuanlan.zhihu.com/p/58688732
https://zhuanlan.zhihu.com/p/42044315
https://zhuanlan.zhihu.com/p/66155616
https://www.zhihu.com/question/24658552/answer/117539890
https://blog.csdn.net/nawenqiang/article/details/80847087