第四章 导数与微分
一、引例
1. 瞬时速度(变速直线运动)
2. 切线的斜率
二、导数的定义
(1)导数
定义1:若在
点某邻域上有定义,且
存在,则称
在
点可导,该极限值称为
在
点的导数,记
或
或
或
.
注:
1. 若
若
2. 物理意义——瞬时速度
几何意义——斜线斜率
3.
例1:
解:
例2:
解:
而
(2)单侧导数
定义2:若在
上有定义,且
存在,则称
在
点左可导,极限值称为
在
点的左导数,记
或
.
注:右导数可以类似定义.
定理1:.
例3:
解:
所以
(3)区间上导数
定义3:在
上每一点都可导,则称
在
上可导.
在
上可导
在
上可导且
在
点右可导,
点左可导.
注:
(4)几何意义的应用
过
过
三、可导与连续
定理2:在
点可导
在
点连续.
证明:根据定义,
则
则
故
注:
例4:
解:
故
例5:
解:(1)
(2)
例6:若
证明:
故
注:不可导:
- 跳跃
- 无穷
- 振荡
一、几个基本初等函数的导数
命题1:![]()
证明:
当
当
二、求导法则
(1)四则运算法则
命题2:
1.![]()
2.![]()
3.![]()
证明:以下只证明2. 和3.
注:用数学归纳法推广
例7:
(2)反函数求导
命题3:若在
上连续且严格单调,又
,则反函数
在点
可导,且
![]()
思路:
证明:利用复合函数的极限运算
令
即
注:
1.
2. 若
3.
推论:
则
例8:
反函数
例9:
反函数
例10:
反函数
于是,现在我们可以得到一个更完善的基本初等函数求导公式表.
定理3(基本求导公式):![]()
例11:
(3)复合函数求导
命题4:在
点可导且
![]()
思路(不严谨):
最终自变量改变量
中间自变量改变量
复合函数改变量
这个证明的瑕疵在于,如果
证明:
注意,规定此处
根据芝麻引理,
则
若
所以
注:
1.
2.
3. 可以用数学归纳法推广到
推论:若
例12:
例13:
例14:
例15:
例16:
例17:
例18:
例19:证明可导奇函数的导数为偶函数
证明:
关于
即
(4)对数求导法
1. 幂指型函数
注:前一部分是把
2. 多个函数的积、商、幂
例20:
注:
1. 根号下非负,可以带上绝对值
2. 对数的真数大于零,所以对数求导法的结果缩小了导函数的定义域. 事实上,它忽略了使得被求导的函数等于

事实上我们可以通过化简对数求导的结果来扩充其定义域,但是似乎各大教材和文献都忽略了这一点,也确实让我很困惑. 本文也只好遵循这个“传统”了.
例21:
注:本题中
(5)分段函数求导
- 各定义开区间上用求导公式
- 分界点用(左,右)导数定义
例22:
解:
综上
一、定义
定义4:若在
可导,则
仍是
上的函数. 若
也在
可导,则称
的导函数
为
的二阶导数,记作
或
或
.
类似地,可以定义的导函数为
的三阶导数,记作
或
或
.
定义的导函数为
的
阶导数,记作
或
.
注:一般从四阶导数开始就不再用
例23:
则
以此类推
推广:
例24:
则
以此类推
于是,我们可以得到一个常见函数高阶导数公式表.
定理4(高阶导数公式):![]()
二、运算法则
(1)线性运算
命题5:![]()
证明:数学归纳法,略
(2)乘法运算
命题6(公式):
![]()
证明:数学归纳法,设公式对
归纳完成
注:
例25:
解:
例26:
解:
一、隐函数求导
定义5:称为显函数.
例如,
定义6:若存在集合,对任意
,存在唯一的
使得方程
成立,则称方程
确定了一个隐函数.
例如,
注:绝大多数隐函数无法显化.
问:隐函数不显化的情况下如何求
例27:
法一:
综上
法二:等式两边同时关于
例28:
解:
所以
例29:
解:
即
令
又因为
二、参数式函数求导
定义7:由参数方程确定的函数叫参数式函数.
例如,
注:绝大多数参数式函数无法消参.
问:参数式函数不消参的情况下如何求
如果在
则
则
注:
1.
2.
例30:
解:
例31:
所以切线为
引例:

正方形边长是
当
一、定义
定义8:如果在
上有定义,且
能写成
的形式,则称
在
点可微.
称为
在
点的微分,记为
或
,即
.
注:
1.
2.
即
3.
例32:求
解:
注:以后我们记
例33:求
解:
所以
二、微分和导数的关系
定理5:函数在
点可微的充分必要条件是函数
在
点可导,且微分中
的系数
.
证明:
必要性:
根据可微的定义
所以
充分性:
根据可导的定义
所以
所以
从而
注:
三、几何意义
由于
因此微分

从几何上看,就是用切线的改变量近似地代替函数的改变量
即:“以直代曲”或“局部线性化”
注:连续和导数都是局部性质.
应用:近似运算
当
特例:当
例34:(1)当
解:(1)当
(2)
四、运算法则
基本初等函数求微分可以借助基本初等函数求导公式
(1)四则运算法则
命题7:
1.![]()
2.![]()
3.![]()
证明:
(2)反函数的微分
(3)复合函数的微分
命题8(一阶微分形式的不变性):设,
,则复合函数
的微分
.
证明:
其中
故
一阶微分形式的不变性说明,可以在微分等式中代入变量.
例如,
代入
例35:
法一:
法二:
令
五、高阶微分
定义9:函数的一阶微分是
,可以视为关于
的函数,如果它是可微的,则再求一次微分得,
,称为
的二阶微分,记为
. 把
记作
,即
.
类似地,可以定义的三阶微分,
.
可以定义的
阶微分,
.
注:
1.
2.