含根号的导数怎么求_数学分析Mathematical Analysis笔记整理 第四章 导数与微分

第四章 导数与微分

导数的概念

一、引例

1. 瞬时速度(变速直线运动)

2. 切线的斜率

二、导数的定义

(1)导数

定义1:
点某邻域上有定义,且
存在,则称
点可导,该极限值称为
点的导数,记
.

注:

1. 若

不存在,则称
点不可导

,记

2. 物理意义——瞬时速度

几何意义——斜线斜率

3.

例1:

点的导数

解:

例2:

,求

解:

不存在,
点不可导

(2)单侧导数

定义2:
上有定义,且
存在,则称
点左可导,极限值称为
点的左导数,记
.

注:右导数可以类似定义.

定理1:
.

例3:

,求

解:

所以

(3)区间上导数

定义3:
上每一点都可导,则称
上可导.
上可导
上可导且
点右可导,
点左可导.

注:

满足值得唯一对应性,是关于
的函数,叫
上的导函数,记
.

(4)几何意义的应用

点切线:

点法线:

三、可导与连续

定理2:
点可导
点连续.

证明:根据定义,

有定义,且
存在

点连续

注:

点不连续
点不可导.

例4:

,求

解:

点不可导

例5:

(1)
(2)
,讨论
处的连续性和可导性

解:(1)

,连续

(振荡),不可导

(2)

,可导
连续

例6:

为奇函数且
存在,证明
存在.

证明:

为奇函数

存在.

注:不可导:

  1. 跳跃
  2. 无穷
  3. 振荡

求导法则

一、几个基本初等函数的导数

命题1:

证明:

二、求导法则

(1)四则运算法则

命题2:
1.

2.

3.

证明:以下只证明2. 和3.

注:用数学归纳法推广

例7:

(2)反函数求导

命题3:
上连续且严格单调,又
,则反函数
在点
可导,且

思路:

证明:利用复合函数的极限运算

,则

注:

1.

上连续且严格单调

2. 若

,则

3.

推论:

可导且严格单调,

可导且

例8:

反函数

例9:

反函数

例10:

反函数

于是,现在我们可以得到一个更完善的基本初等函数求导公式表.

定理3(基本求导公式):

例11:

(3)复合函数求导

命题4:
点可导且

思路(不严谨):

最终自变量改变量

中间自变量改变量

复合函数改变量

这个证明的瑕疵在于,如果

是常函数,则
后面一大串都是没有意义的

证明:

点可导的,

注意,规定此处

根据芝麻引理,

,其中

时,
,也满足上式

所以

恒成立

注:

1.

,链式法则,

2.

3. 可以用数学归纳法推广到

层复合的求导法则

推论:

的定义域包含
的值域,且两个函数在各自的定义域上可导,则复合函数
在定义域上可导且
.

例12:

,求

例13:

例14:

例15:

例16:

例17:

例18:

例19:证明可导奇函数的导数为偶函数

证明:

关于

求导,

,为偶函数

(4)对数求导法

1. 幂指型函数

注:前一部分是把

固定当作指数函数求导,后一部分是把
固定当作幂函数求导.

2. 多个函数的积、商、幂

例20:

注:

1. 根号下非负,可以带上绝对值

2. 对数的真数大于零,所以对数求导法的结果缩小了导函数的定义域. 事实上,它忽略了使得被求导的函数等于

的点(例如本题中的
). 有时候这些点是不可导的(如本题),而有时是可导的(如下题). 维基百科说明对数求导法仅适用于恒不为
的可导函数.

508c55c202f5f7e95f120d77b9a53f59.png

事实上我们可以通过化简对数求导的结果来扩充其定义域,但是似乎各大教材和文献都忽略了这一点,也确实让我很困惑. 本文也只好遵循这个“传统”了.

例21:

注:本题中

实际上是可导的,在此依据“传统”忽略这一点

(5)分段函数求导

  1. 各定义开区间上用求导公式
  2. 分界点用(左,右)导数定义

例22:

,求

解:

时,

时,

综上

不存在

高阶导数

一、定义

定义4:
可导,则
仍是
上的函数. 若
也在
可导,则称
的导函数
的二阶导数,记作
.

类似地,可以定义
的导函数为
的三阶导数,记作
.

定义
的导函数为
阶导数,记作
.

注:一般从四阶导数开始就不再用

的记号,而采用
来表示. 函数的零阶导数理解为函数本身. 求函数的高阶导数,有时可用归纳法,得出一个一般的公式.

例23:

以此类推

推广:

例24:

以此类推

于是,我们可以得到一个常见函数高阶导数公式表.

定理4(高阶导数公式):

二、运算法则

(1)线性运算

命题5:

证明:数学归纳法,略

(2)乘法运算

命题6(
公式):

证明:数学归纳法,设公式对

成立,则

归纳完成

注:

公式在形式上与二项式定理相似,原因是

例25:

解:

例26:

,求

解:


隐函数求导与参数式函数求导

一、隐函数求导

定义5:
称为显函数.

例如,

定义6:若存在集合
,对任意
,存在唯一的
使得方程
成立,则称方程
确定了一个隐函数.

例如,

可以显化为

注:绝大多数隐函数无法显化.

问:隐函数不显化的情况下如何求

例27:

确定,求

法一:

综上

法二:等式两边同时关于

求导

例28:

确定,求

解:

所以

例29:

解:

,两边求
阶导

又因为

二、参数式函数求导

定义7:由参数方程
确定的函数叫参数式函数.

例如,

消参得
显化得

注:绝大多数参数式函数无法消参.

问:参数式函数不消参的情况下如何求

如果在

严格单调,且

确定函数

注:

1.

2.

例30:

确定,求

解:

例31:

确定,求
处的切线

所以切线为


微分

引例:

c12d054dc5a2d7731fa005d20f467b3f.png

正方形边长是

,当边长增加
,面积增加

充分小时,
(线性主部),称为微分

一、定义

定义8:如果
上有定义,且
能写成
的形式,则称
点可微.
称为
点的微分,记为
,即
.

注:

1.

无关,
也叫线性主部

2.

充分小时,

3.

:可微
连续

例32:

的微分

解:

注:以后我们记

例33:

解:

所以

二、微分和导数的关系

定理5:函数
点可微的充分必要条件是函数
点可导,且微分中
的系数
.

证明:

必要性:

根据可微的定义

所以

充分性:

根据可导的定义

所以

所以

从而

注:

. 在定义微分前,符号
作为一个整体,而现在有了微分的概念之后,微商可以看作是微分之商.

三、几何意义

由于

因此微分

是曲线
处的切线对应的改变量

9c4afd540d3113aff6e9ff048b8b7873.png

从几何上看,就是用切线的改变量近似地代替函数的改变量

即:“以直代曲”或“局部线性化”

注:连续和导数都是局部性质.

应用:近似运算

充分小时,

特例:当

充分小时,

例34:(1)当

充分小时,
(2)求
的近似值

解:(1)当

充分小时

(2)

四、运算法则

基本初等函数求微分可以借助基本初等函数求导公式

(1)四则运算法则

命题7:
1.

2.

3.

证明:

(2)反函数的微分

(3)复合函数的微分

命题8(一阶微分形式的不变性):
,则复合函数
的微分
.

证明:

其中

一阶微分形式的不变性说明,可以在微分等式中代入变量.

例如,

,则

代入

,则

例35:

,求

法一:

法二:

,则

五、高阶微分

定义9:函数
的一阶微分是
,可以视为关于
的函数,如果它是可微的,则再求一次微分得,
,称为
的二阶微分,记为
. 把
记作
,即
.

类似地,可以定义
的三阶微分,
.

可以定义
阶微分,
.

注:

1.

,这就是
阶导数符号的由来

2.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值