关于投篮的数学建模模型_防守状态下投篮运动的数学建模

一、问题分析问题:有人防守时,如何重新选择空心投篮的最佳投篮点及投篮角度。在有人防守情况下,采取干拔跳投的技术手段,可以增加垂直高度,假设速度不变,使投篮的最佳角度减小,可找到最佳出手点,或者增加垂直高度,假设投篮角度不变,投篮速度变小;采取后仰跳投的方式,延长水平距离,增大投篮角度,从而提高命中率。二、模型假设假设空气的阻力、主观因素对运动员投篮影响、篮球出手后球自身的旋转可忽略;假设篮球的运动轨迹和篮筐中心在同一平面内。三、符号说明表1L投球出手点到篮筐中心的水平距离θ投射速度方向与水平方向的夹角(投篮出手角)H篮筐到地面的垂直高度β篮球入筐时的入篮角h投射点到地面的垂直高度S篮圈的中心距篮板的距离R篮筐的半径g重力加速度d蓝球的直径v投射点的投篮速度按照国际标准尺寸,L=4.6m,H=3.05m,d=24.6cm,D=45cm四、模型建立与求解(一)用运动学知识建立最基础的投篮模型t=0时刻,篮球被投出,出手时篮球的速度为v,速度方向与水平面夹角为θ可得:x(t)=vt cosθy(t)=vt sinθ-gt22篮球的运动轨迹方程:y=xtanθ-x2g2v2cos2θ(1)(二)问题:有人防守时,如何重新选择空心投篮的最佳投篮点及投篮角度考虑到有人防守的情况下,对模型进行改进,例如后卫可以采取干拔跳投的方式,增加垂直高度,在速度不变的情况下使投篮的最佳角度减小,提高命中率;采取后仰跳投的方式,延长水平距离,增大投篮角度,从而提高命中率。相关参数表表2x(t)篮球轨迹水平方向上的距离x1出手点O离F点的水平距离y(t)篮球轨迹竖直方向上的距离x2O点离C点的水平距离(即投篮距离)F防守者起跳点E跳投的起跳点C篮筐中心G篮筐中心垂直于地面的投影点EO球从地面到出手高度O跳投出手点FA'防守者垂直上跳直臂防守时,封盖点A'(手指尖)离地面的高度按照国际标准尺寸,L=4.6m,H=3.05m,d=24.6cm,D=45cm投篮时有人防守的条件下,投者跳投时,能否免遭封盖,决定FA与FA'的高度大小的关系,即FA必须大于FA'。因A点是球心经过守者正上方时的轨迹点,而球的半径为12.4cm,当球经过A点时,球的最下沿则比A点低12.4cm,因此要免遭封盖,使防守者触及不到球,可得:FA>FA'+12.4cm(2)FA=EO+y1(3)将式(3)代入式(2)即得FA=EO+y1(4)根据计算斜抛运动的有关公式,可推导出y1=tanθ·x1-x21x22(tanθ·x2-y2)(5)将式(5)代入式(4)即得EO+tanθ·x1-x21x22(tanθ·x2-y2)[]>FA'+12.4cm(6)式(6)是在有人防守的条件下,进行个人攻击跳投时,免遭封盖的二维空间参数模型(不考虑空气助力和球自身旋转对球的飞行轨迹的影响)。在测得或给定各种八通的有关参数(EO、y2、θ、x2、x1)值时,则可根据式(6)计算出相应的各种y1值和FA值,并可列成数表(如表3)。表3x2(m)EO(cm)y2(m)αx1(cm)38°40°41°42°43°44°7 280 25 130 84/364 90/370 93/373 96/376 100/380 103/3837 280 25 110 73/333 73/368 81/361 84/364 87/367 90/3707 280 25 90 63/362 66/316 69/349 71/351 74/354 76/3577 280 25 70 47/329 53/353 55/335 57/337 59/339

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值