python矩阵运算库效率_Python稀疏矩阵运算库scipy.sparse用法精要

1、稀疏矩阵的常见存储形式bsr_matrix(arg1[, shape, dtype, copy, blocksize])

Block Sparse Row matrixcoo_matrix(arg1[, shape, dtype, copy])

A sparse matrix in COOrdinate format.csc_matrix(arg1[, shape, dtype, copy])

Compressed Sparse Column matrixcsr_matrix(arg1[, shape, dtype, copy])

Compressed Sparse Row matrixdia_matrix(arg1[, shape, dtype, copy])

Sparse matrix with DIAgonal storagedok_matrix(arg1[, shape, dtype, copy])

Dictionary Of Keys based sparse matrix.lil_matrix(arg1[, shape, dtype, copy])

Row-based linked list sparse matrix

2、不同存储形式的区别

>>> from scipy import sparse

>>> sparse.bsr_matrix([[1,0,0,0,0],[0,1,0,0,1]])

<2x5 sparse matrix of type ''

with 3 stored elements (blocksize = 1x1) in Block Sparse Row format>

>>> sparse.coo_matrix([[1,0,0,0,0],[0,1,0,0,1]])

<2x5 sparse matrix of type ''

with 3 stored elements in COOrdinate format>

>>> sparse.csc_matrix([[1,0,0,0,0],[0,1,0,0,1]])

<2x5 sparse matrix of type ''

with 3 stored elements in Compressed Sparse Column format>

>>> sparse.csr_matrix([[1,0,0,0,0],[0,1,0,0,1]])

<2x5 sparse matrix of type ''

with 3 stored elements in Compressed Sparse Row format>

>>> sparse.dia_matrix([[1,0,0,0,0],[0,1,0,0,1]])

<2x5 sparse matrix of type ''

with 4 stored elements (2 diagonals) in DIAgonal format>

>>> sparse.dok_matrix([[1,0,0,0,0],[0,1,0,0,1]])

<2x5 sparse matrix of type ''

with 3 stored elements in Dictionary Of Keys format>

>>> sparse.lil_matrix([[1,0,0,0,0],[0,1,0,0,1]])

<2x5 sparse matrix of type ''

with 3 stored elements in LInked List format>

3、sparse模块中用于创建稀疏矩阵的函数eye(m[, n, k, dtype, format])

Sparse matrix with ones on diagonalidentity(n[, dtype, format])

Identity matrix in sparse formatkron(A, B[, format])

kronecker product of sparse matrices A and Bkronsum(A, B[, format])

kronecker sum of sparse matrices A and Bdiags(diagonals[, offsets, shape, format, dtype])

Construct a sparse matrix from diagonals.spdiags(data, diags, m, n[, format])

Return a sparse matrix from diagonals.block_diag(mats[, format, dtype])

Build a block diagonal sparse matrix from provided matrices.tril(A[, k, format])

Return the lower triangular portion of a matrix in sparse formattriu(A[, k, format])

Return the upper triangular portion of a matrix in sparse formatbmat(blocks[, format, dtype])

Build a sparse matrix from sparse sub-blockshstack(blocks[, format, dtype])

Stack sparse matrices horizontally (column wise)vstack(blocks[, format, dtype])

Stack sparse matrices vertically (row wise)rand(m, n[, density, format, dtype, ...])

Generate a sparse matrix of the given shape and density with uniformly distributed values.random(m, n[, density, format, dtype, ...])

Generate a sparse matrix of the given shape and density with randomly distributed values.

4、用法演示(为了不影响排版,直接从我整理的PPT上截图过来了)

长按二维码向我转账

受苹果公司新规定影响,微信 iOS 版的赞赏功能被关闭,可通过二维码转账支持公众号。

阅读

好看

已推荐到看一看

你的朋友可以在“发现”-“看一看”看到你认为好看的文章。

已取消,“好看”想法已同步删除

已推荐到看一看

和朋友分享想法

最多200字,当前共字

发送

已发送

朋友将在看一看看到

确定

分享你的想法...

取消

分享想法到看一看

确定

最多200字,当前共字

发送中

网络异常,请稍后重试

微信扫一扫

关注该公众号

联系我们

欢迎来到TinyMind®。

关于TinyMind的内容或商务合作、网站建议,举报不良信息等均可联系我们。TinyMind商标已注册,本站为TinyMind唯一官网,任何盗用TinyMind品牌名建立的网站均为盗版,公司保留追究侵权的权利。

TinyMind客服邮箱:support@tinymind.net.cn

©TinyMind.net.cn,腾英旗下专业AI技术社区 沪ICP备17018069号-3

友情链接

腾英公司旗下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值