


数字推理不是广东的特色考点,但广东的数字推理是比较有“特色”的,他的特色就是简单,特别是2019年的数字推理。但我们不能因为某一两年考得简单而简单地学,为了让大家更加系统地学习数字推理,今天兼得先生为大家全面梳理了数字推理的几大题型以及解题方法,相信我,把这几个类型的数字推理学透,广东省考的数字推理你会拿满分的,好了,直接上干货吧,我不擅长往文章里兑水,当然,也不会这样做。
广东解题方法以及常考题型都比较固定。做这类目最重要是要关注题目的“信号”。当出现这类“信号”时,需要马上对号入座,选择对应的方法。广东考的数列每年题量基本固定在5题。而知识点也是在5个左右,你们这节课要仔细记录我说的东西,特别是我提醒你的,一定要记住。
基本题型
1.基础数列:
1 ,3 ,5 ,7 ,9,( )
2 ,3 ,5 ,7 ,11 ,13 ,( )
2.多级数列:
5 ,13 ,25 ,41 ,( )
3.递推数列:
1 ,2 ,5,11 ,26 ,( )
4.多重(分组)数列:
(1)奇偶分组:
1,4,4,6,9,8,16,( )
(2)数字内部分组:
1.1 ,2.3 ,4.5 ,9.7 ,()
5.幂次方数列:
1 ,4 ,9 ,25 ,36 ,( )
6.分数数列:( )

7.机械拆分数列:
325 ,118 ,721 ,604 ,( )
8.图形数列:



作差(作和)型是普通多级数列的典型代表,这里以作差型数列为例,作差,顾名思义,是指后项减去前项(或前减去后项)得出一个有规律的数列。一般考试最多就是考到二级、三级作差。
例1:5 ,13 ,25 ,41 ,( )

我把刚才那个作差的数列用图表的形式来展现给大家,大家有没有发现一些规律,没错,那就是他的递增不明显。
划重点:作差型的数列有个明显的特征,那就是整个数列的递增不明显:
如果单调陡增很明显的话,就是考另外两个考点,一是递推数列(多与前后倍数有关系),二是幂次方类(如平方,三次方,四次方等),这类型接下来会详细讲解。
这类简单的多级数列,一般是采用作差法来解题。作差法分为一级作差和多级作差,一级作差就是作差一次就可以看到明显规律,多级作差就是需要作差两次或两次以上才有明显的规律。
紧记!用作差法的题目,数字之间递增或递减的速度是比较慢的。
(一)一级作差
1 ,3 ,5 ,7 ,( )
注意:作差出来的数字都是有规律的数列,
如1,2,3,4或2,4,6,8

大家按这个方法来做一下这两道题:
例 2 :0 ,1 ,6 ,15 ,28 ,( )
例 3 :1 ,2 ,6 ,15 ,31 ,( )
(二)多级作差
俗话说,这个世界上没有一顿宵夜解决不了的事,如果有,那就两顿。作差数列也是同样的道理,你作差一次找不到规律,那你就再作差一次,看能否得到明显的规律。多级作差就是指需要作差两次或两次以上才有明显规律的数列。
例:1 ,2 ,5 ,12 ,25 ,( )
解:

分组型的数列比较明显,那就是这个题干一般都有8个或8个以上的数,又或者有明显小数点的,你看到这样的题,要立刻想到分组,先分组再找规律。分组通常有几个类型,分别是奇偶数位分组、数字内部分组或数字合并分组等。
1.奇偶数位分组:
1,4,4,6,9,8,16,( )
分成两组:
(1)奇数位组:1、4、9、16
(2)偶数位组:4、6、8、10
2.数字内部分组:
1.1 ,2.3 ,4.5 ,9.7 ,( )
分成两组:
(1)整数组:1、2、4、9
(2)小数点组:1、3、5、7
3.数字合并分组:
5、11、12、10、13、15、19、( )
[5+11] ,[12+10],[13+15],[19+?]
16 , 22 , 28 , 34
4.前后对应分组:
1、3、2、5、10、13、12、( ?)
[1+ ?] ,[3+12],[2+13],[5+10]
拿最后一个例题来分析,通过分组我们可以发现,前后项相加都是等于15,因此?处应该填“14”,但是你一定要知道,前后项分组有时对应结果是常数,有时对应是递增或递减数列。
备注:
1.其实前后对应分组只是数字合并分组的一个细分,为了让大伙更好地理解,我就把他单独拿出来讲解;
2.数字合并分组只是为了方便大家理解而取的名字,这个类型的数列会有几种变形,但是万变不离其宗,大家要学会应变。
现在大家用刚才教的方法做如下几道题:
例4 (2014 广东)
8、3、17、5、24、9、26、18、30、( )
例5 (2017 吉林)
ln 4 - ln 3,ln 8 - ln 8,ln 16 - ln 15,ln 32 - ln 24,( ),ln 128 - ln 48
A.ln 64 - ln 35 B. ln 32 - ln 28
C. ln 64 - ln 36 D. ln 32 - ln 35

刚才已经说过,如果单调陡增很明显的话,就是考另外两个考点,一是前后倍数关系,二是幂次方类。其中前后倍数关系类的数列,是递推数列中比较常考的一类。

所谓递推,是指前后项存在着一定的关系,然后按这个关系递推出结果,也就是后面的数是根据前面的数按照一定的关系得来的,最基本的递推关系就是和、差、积、商。
(一)先拿几个例子和大家简单介绍一下,什么是递推数列:
1.和,如:
1、2、3、5、8、13、(21)
1+2=3,2+3=5,3+5=8,
第一项+第二项=第三项
2.差,如:
21、13、8、5、3、2、(1),
21-13=8,13-8=5,( )=3-2=1;
3.积,如:
1、2、2、4、8、(32)
1x2=2,2x2=4,( )=4x8=32;
4.商,如:
32、8、4、2、2、(1)
32÷8=4,8÷4=2,( )=2÷2=1。
(二)递推数列解题思维
递推数列,关键是找关系,前后项可以通过什么相互关系得来呢?这类题目一般是从第二项或者第三个项开始找关系的:
例6:1 ,2 ,3,10 ,39 ,( )
也就是:3是怎么来的、他和前面两项可以通过什么关系转化而来;10是怎么来的、39是怎么来的。当然,这道题有几种解法。


包括(平方数、立方数、4 次方)。这类题本身是幂次数,广东经常考这么简单的,最多就是在幂次数的基础上加减一个数,这就演变成修正幂次数列。这类型的题目其实很简单,但是平时要多练习,培养自己对数字的“敏锐”性。
首先,你要谨记三个法则:
(一)一个数是可以有多种不同次幂的
一个数是可以有多种不同次幂的,要灵活变通,做题时最好从只有一个次幂的数下手,再倒推其他的。

(二)看到一个数,要知道这个数是可以通过哪个幂次方的数修正而来的,也就是说:你看到66,你要想到可以这样得来:

思维一定要灵活应变。
练习一下,你们告诉我这几个数可以怎么变来的:
例7 :3 ,6 ,10 ,20 ,29 ,30

其他几个数大家用这个方法写出来。
(三)负幂次方变换

一般出现在有几个数字,突然冒出一个分数,这时需要考虑负幂次方变换。


分数数列考察的方向也有几个,分别是“化同”、“分子分母分开找规律”“反约分”、“前后关系”等,下面我们逐一讲解:
1.“化同”,也就把整个数列的分子或者分母化成同一个数,然后找规律。方法观察数列,能否把分母或者分子通分化为一致,能一致就进行分母或分子同分,然后观察规律。大

分母都一样,接下来找分子的规律就可以了,6+8=14,8+14=22。
现在你们用这个方法来做一下这题:

2.“反约分”,这类题目首先要观察分数的趋势,看是否递增。
(1)递增:先分开看(分子分母是否单独成规律),再一起看(分子、分母一起观察,相互之间是否有规律)。
(2)不递增,即上下起伏:我们就要把数列变成递增的,这时约分、反约分两种方法结合使用。

反正以上两种方法我总结为,可以把分母通分成一样的最好,不能的话就把就需要我们“造”一个数列出来,一般是分母和分子分别弄成一个明显关系的数列。

解:这题一看上去是不是有点乱,但是我们按方法来,可以变成同分母吗,明显不能,那只能想办法把分子或分母变成有规律的数列。
我们发现这个数列中:

因此先从分母下手:3、2、7、11、9
可变为:3、4、7、11、18
分子也顺势变成:1、2、3、5、8
整个数列就变成:

这里强调一点:2变成4,这个4不是乱变的,是要在一定区间范围内的,一般是前后项之间的,这里就是3和7之间。
3.“前后关系”,顾名思义,这类数列前后项之间是有一定的关系的,一般是乘或者除,作差作和之类的比较少。

解:我们仔细观察这个数列,发现他的规律有点意思,前一项的分子分母相乘(2x5)等于下一项的分母(10);前一项的分母分子相减(5-2)等于下一项的分子(3)

这类型的题目,如果你是按照之前的思路是无法算出来的,广东很喜欢考这些题目的。这些题目有个特征,就是数与数之间毫无特征,有时突然增大或突然增小,或者都是很大的数。反正就是正常逻辑解释不了的。这时就只有运用数字内部规律来找了。
数字内部规律一般是内部相加减或相乘之类的,行内一般叫机械拆分,反正哪个容易理解你选哪个。
例13 :325 ,118 ,721 ,604
解:这是广东的一道原题,我们来看看怎么做。从325到118再到721,忽然增大忽然减小,用多级数列或者递推数列之类的解法来做,想到下一年省考开始,你还是解不出的,这类型的题目要把数字按照个位十位百位单独分开来看,然后再内部相加减或相乘之类的来找规律。
(1)325=3+2+5=10;
(2)118=1+1+8=10;
(3)721=7+2+1=10;
(4)604=6+0+4=10.
这时我们就非常清晰了,各个数位之和等于一个常数。但我们要注意,有时各个数位相加减得到的结果有可能是普通的等差数列,也有可能是一个质数数列,反正就是相加减后得出一个有规律的数列。
现在大伙用这个方法来做一下这两道题:
例14 :3721、6636、339、5525
例15 :102、113、106、801、( )

图形题表现形式也有几类,如“九宫格”“四宫圆”等,一般解法都是相邻数之间找关系,不外乎加减乘除,或者平方之类的。做这些题首要的是找到对应“?”所在位置的关系。如例16中的7、2是通过什么关系得来的?
例16

解:“?”对应的位置分别是A图中的7和B图中的2,我们现在来想,7、2是通过什么关系得来的,刚才说了,一般解法都是相邻数之间找关系,不外乎加减乘除,或者平方之类的。所以我们得留意“7”周围几个数之间有什么相互关系。
(1)找倍数关系:15÷5=3;
(2)找平方关系:这道题没有;
(3)找加减关系:15-5=10;10-7=3
这时我们发现:15÷5=3,10-7也是等于3,是不是找到一点所谓的关系了。接着我们拿B项来验证一下:24÷4=6,8-2=6,验证通过,因此“?”对应的数是4(32÷8=4,8-4=4).

用刚才的方法来做一下这道题,提示一下,这道题和平方有关系。
最后,我们已经系统把数字推理的几大题型学完,现在我们用近两年来广东的数字推理真题来验证一下,你能否全对。想学习更多干货,请加兼得先生微信:87228835.



