PointNet是对点云数据直接进行学习的开山之作, 这里结合PointNet-Pytorch代码,对PointNet网络结构与其思想进行阐述和分析。
点云数据的特性:
点云数据不同于图像数据,他有三个重要的特征,也正是基于这些特征,才有PointNet网络的一系列的设计。
1)点云的无序性
这个要对比图像数据来理解,一团点云数据中有很多个点数据,这些点在点云文件里无论以什么顺序出现,它们指代的信息并不改变。相反,一张图片里的点在图像里已经按照固有的顺序排列好了。论文里利用了maxpooling这个对称函数来提取点云的数据特征。


2)点与点之间的空间关系
每个点都包含了空间坐标信息,这些信息之间构成一定的集合空间关系,为了利用这种关系,论文作者提出了将局部特征和全局特征进行串联的方式来聚合信息。
3)不变性
这样理解,一团点云数据进行旋转和平移,它代表的目标不会发生改变。论文在进行特征提取之前,