python 点乘_python 的点乘

本文介绍了Python中矩阵乘法、点乘的区别,包括numpy库中的dot函数和*运算符的使用。点乘结果是两个向量的标量积,而矩阵乘法则遵循特定的乘法规则。此外,还提到了矩阵的其他操作,如矩阵求逆、矩阵分解等,并展示了相关代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

o55g08d9dv.jpg广告关闭

腾讯云11.11云上盛惠 ,精选热门产品助力上云,云服务器首年88元起,买的越多返的越多,最高返5000元!

文章目录 矩阵乘法,星乘(*)和点乘(.dot)的区别1. 基本示例2. 总结python实现余弦相似度java实现余弦相似度矩阵乘法,星乘(*)和点乘(.dot)的区别1. 基本示例import numpya = numpy.array(, ])b = numpy.array...

点乘:点乘的结果是一个实数 a·b=|a|·|b|·cosx x为a,b的夹角 结果为数,且为标量 例: a=,b= a·b=a1b1+a2b2+a3b3叉乘(向量积):当向量a和b不平行的时候其模的大小为 |a×b|=|a|·|b|·sinx(实际上是ab所构成的平行四边形的面积) 方向为 a×b和a,b都垂直 且a,b,a×b成右手系当a和b平行的时候,结果为0向量 叉...

oe9wltcbqw.png

点乘:点乘的结果是一个实数 a·b=|a|·|b|·cosx x为a,b的夹角 结果为数,且为标量 例: a=,b= a·b=a1b1+a2b2+a3b3差乘:当向量a和b不平行的时候其模的大小为 |a×b|=|a|·|b|·sinx(实际上是ab所构成的平行四边形的面积) 方向为 a×b和a,b都垂直 且a,b,a×b成右手系当a和b平行的时候,结果为0向量 叉乘结果为...

qzpb59gbk7.png

线性代数矩阵乘法:使用dot函数而不是 *,使用 * 得到的结果等于是matlab中使用点乘. * 的结果,使用d

<think>好的,我现在需要帮助用户理解矩阵的和叉的概念及其区别。首先,我得回顾一下自己对这些概念的理解,确保准确无误。 根据提供的引用资料,(element-wise multiplication)应该是元素对应相,而叉(matrix multiplication)是矩阵法。引用[1]提到矩阵叉需要满足A的列数等于B的行数,结果矩阵C的大小是m×p。而引用[3]则指出的行数必须相等,并且前者的列数与后者相等或为1,可能涉及广播机制。这让我想到在NumPy中,可能使用*运算符,而叉用np.dot或者@运算符。 用户可能混淆了和叉的应用场景,比如什么时候使用哪一种运算。此外,用户可能对Python中的具体实现感兴趣,比如如何使用NumPy库来实现这两种运算。引用[2]和引用[3]提供了Python代码的例子,这可能对用户有帮助。 接下来,我需要明确两者的定义、数学表示以及区别。在数学中通常没有标准的术语,可能被称为Hadamard积,而叉就是标准的矩阵法。数学符号上,可能用$\circ$表示,而叉则用普通的法符号或者不用符号,直接写成AB。 另外,用户提到的应用场景可能包括推荐系统,如引用[4]中的User Matrix和Item Matrix,这里可能涉及到矩阵分解中的或叉应用,需要进一步明确。 需要注意的是,避免混淆向量(内积)和矩阵。向量的结果是标量,而矩阵是元素相,结果还是矩阵。引用[2]提到np.dot对于一维数组计算内积,这需要特别说明。 最后,生成相关问题时要围绕概念、区别、应用和实现等方面,帮助用户深入理解。</think>### 矩阵与叉的概念及区别 #### 1. **定义与数学表示** - **(Element-wise Multiplication)** 对两个相同形状的矩阵,逐元素相。数学表示为: $$C_{ij} = A_{ij} \cdot B_{ij}$$ 要求两矩阵行数和列数完全一致,或通过广播机制兼容(如一个矩阵的列数为1时扩展)[^3]。 - **叉(矩阵法,Matrix Multiplication)** 通过行与列的线性组合生成新矩阵。对于矩阵$A_{m×n}$和$B_{n×p}$,结果矩阵$C_{m×p}$的元素满足: $$C_{ij} = \sum_{k=1}^n A_{ik} \cdot B_{kj}$$ 要求$A$的列数等于$B$的行数[^1]。 --- #### 2. **核心区别** | **特征** | **** | **叉** | |----------------|------------------------|------------------------| | 运算规则 | 对应元素相 | 行与列线性组合 | | 符号(Python) | `*`或`np.multiply` | `np.dot`或`@` | | 形状要求 | 完全一致或广播兼容 | $A$的列数 = $B$的行数 | | 应用场景 | 图像处理、逐元素修正 | 线性变换、推荐系统[^4] | --- #### 3. **Python实现示例** ```python import numpy as np # 示例 A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) 结果 = A * B # 输出:[[5,12], [21,32]] # 叉示例 C = np.array([[1, 2], [3, 4]]) D = np.array([[5, 6], [7, 8]]) 叉结果 = C @ D # 输出:[[19,22], [43,50]] ``` --- #### 4. **典型应用场景** - ****:图像滤波(如高斯模糊)、激活函数计算(神经网络中逐元素操作)[^3]。 - **叉**:推荐系统(用户-物品矩阵分解)[^4]、物理中的坐标变换。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值