python一维数据插值_python-在numpy数组中插值NaN值

这篇博客介绍了如何在numpy数组中快速用线性插值替换NaN值。提供了一个名为`nan_helper`的辅助函数,以及多个不同的解决方案,如使用`np.isnan`、`interp1d`等函数,展示了解决这个问题的不同方法。
摘要由CSDN通过智能技术生成

python-在numpy数组中插值NaN值

有没有一种快速的方法用(例如)线性插值替换numpy数组中的所有NaN值?

例如,

[1 1 1 nan nan 2 2 nan 0]

将被转换成

[1 1 1 1.3 1.6 2 2 1 0]

9个解决方案

89 votes

让我们首先定义一个简单的辅助函数,以使其更直接地处理NaN的索引和逻辑索引:

import numpy as np

def nan_helper(y):

"""Helper to handle indices and logical indices of NaNs.

Input:

- y, 1d numpy array with possible NaNs

Output:

- nans, logical indices of NaNs

- index, a function, with signature indices= index(logical_indices),

to convert logical indices of NaNs to 'equivalent' indices

Example:

>>> # linear interpolation of NaNs

>>> nans, x= nan_helper(y)

>>> y[nans]= np.interp(x(nans), x(~nans), y[~nans])

"""

return np.isnan(y), lambda z: z.nonzero()[0]

现在可以像下面这样利用nan_helper(.):

>>> y= array([1, 1, 1, NaN, NaN, 2, 2, NaN, 0])

>>>

>>> nans, x= nan_helper(y)

>>> y[nans]= np.interp(x(nans), x(~nans), y[~nans])

>>>

>>> print y.round(2)

[ 1. 1. 1. 1.33 1.67 2. 2. 1. 0. ]

---

尽管似乎先指定一个单独的函数来执行以下操作似乎有点过头了:

>>> nans, x= np.isnan(y), lambda z: z.nonzero()[0]

它最终将支付股息。

因此,每当您处理与NaNs相关的数据时,只需将其所需的所有(新的与NaN相关的新功能)封装在某些特定的辅助函数下即可。 您的代码库将更易于理解,因为它遵循易于理解的习惯用法。

插值确实是查看NaN处理如何完成的一个很好的上下文,但是在其他各种上下文中也使用了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值