《数学实验(MATLAB版韩明版)5.1,5.3,5.5,5.6部分答案》由会员分享,可在线阅读,更多相关《数学实验(MATLAB版韩明版)5.1,5.3,5.5,5.6部分答案(18页珍藏版)》请在人人文库网上搜索。
1、练习5.11、仿照本节的例子,分别画出二项分布的分布规律和分布函数的图形,通过观察图形,进一步理解二项分布的性质。解:分布规律编程作图: x=0:1:20;y=binopdf(x,20,0.7); plot(x,y,*)图像:分布函数编程作图: x=0:0.01:20;y=binocdf(x,20,0.7) plot(x,y)图像:观察图像可知二项分布规律图像像一条抛物线,其分布函数图像呈阶梯状。2、仿照本节的例子,分别画出正态分布的概率密度函数和分布函数的图形,通过观察图形,进一步理解正态分布的性质。解:概率密度函数编程作图: x=-10:0.01:10; y=normpdf(x,2,5);。
2、 plot(x,y)图像:分布函数编程作图: x=-10:0.01:10; y=normcdf(x,2,5); plot(x,y)图像:观察图像可知正态分布概率密度函数图像像抛物线,起分布函数图像呈递增趋势。3、设,通过分布函数的调用计算,.解:编程求解: x1=normcdf(1)-normcdf(-1),x2=normcdf(2)-normcdf(-2),x3=normcdf(3)-normcdf(-3)x1 = 0.6827x2 = 0.9545x3 = 0.9973即:,.4、设,通过分布函数的调用计算与.解:编程求解: x1=binopdf(10,20,0.7),x2=binocdf。
3、(10,20,0.7)-binopdf(10,20,0.7)x1 = 0.0308x2 = 0.0171即:,5、设,求:(1);(2).解:(1)编程求解: p=poisscdf(4,8)p = 0.0996即:(2)编程求解: p=poisscdf(5,8)-poisscdf(2,8)p = 0.1775即:6、(1)设,求;(2)对分布,求;(3)对;(4)对分布,求。解:(1)编程求解: norminv(0.99)ans = 2.3263即:(2)编程求解: chi2inv(0.95,8)ans = 15.5073即:(3)编程求解: tinv(0.95,13)ans = 1.7709。
4、即:(4)编程求解: finv(0.95,15,10)ans = 2.8450即:7、分别生成个和个均匀分布的随机数。解:编程求解: A=unifrnd(0,1,6,2),B=rand(6,1)A =0.9501 0.45650.2311 0.01850.6068 0.82140.4860 0.44470.8913 0.61540.7621 0.7919B =0.41030.89360.05790.35290.81320.0099练习5.31. 设,求该均匀分布的均值和方差。解:编程求解: m,v=unifstat(1,11)m = 6v = 8.33332. 设,求该正态分布的均值、标准差与。
5、方差。解:编程求解: x=normrnd(0,16,5,5); s=std(x),m,v=normstat(0,16)s = 21.5058 9.9310 14.5103 19.2052 17.4124m = 0v = 2563. 生成列服从标准正态分布的随机数,每列个数,每列中,标准差的均值都为1.解:编程如下: x=normrnd(0,1,200,6)x =1.0884 0.0657 2.4681 2.1338 -0.3558 -0.71920.5006 -0.0123 -0.6692 -0.0029 -0.3277 -0.21992.7718 -0.0770 0.2599 -0.0895。
6、 0.0831 0.5750-0.1603 -1.5586 -0.3723 -0.2550 0.4334 0.17010.4295 1.7026 1.3186 -0.8742 -1.2230 -0.4958-1.9668 -0.4690 -0.6531 0.4229 -2.7359 1.2027-0.5460 0.0946 0.0622 -0.1334 -0.5350 -0.1121-1.8884 0.2871 -0.7359 0.5396 2.2090 0.5628-0.1080 0.9194 -0.1793 0.8752 -0.6057 -0.0307-1.3161 0.5101 1.08。
7、47 -1.2508 1.4352 -1.3228-0.6726 0.2454 0.1369 0.8683 1.1948 -1.0830-0.9024 -1.4005 -0.0156 -0.8048 0.7431 0.1575-0.1548 0.9696 -0.9385 -0.7527 -0.1214 -1.46640.9472 1.5937 -1.4781 -0.7458 -0.0312 0.67361.5504 -1.4379 0.3619 -0.3097 -1.0030 0.36250.4290 -1.5342 0.4778 -1.5219 -1.0381 0.6065-0.5608 -。
8、0.0747 0.3217 0.8265 0.6286 0.07420.1793 0.0815 -1.8776 -0.6130 0.8678 1.0805-0.7715 -0.8432 0.6805 0.9597 2.0718 -0.6624-0.9434 -0.5646 0.2334 1.9730 -0.5944 0.4754-1.4076 -0.0282 1.2395 0.2950 0.5863 1.2443-1.9061 -1.2437 0.1257 -0.3927 1.5256 0.0296-0.0653 0.7330 0.1797 0.5759 2.1432 0.69170.6721。
9、 0.0596 -0.6051 -1.1414 -0.7460 -0.68560.2061 0.1491 -1.0369 0.0611 -1.5315 -0.0431-0.0081 1.5959 -0.2953 0.0123 -0.2132 -1.54770.0200 -0.7773 1.4561 -0.1681 0.4925 -1.0718-0.5584 1.5503 1.8025 -0.6873 -0.3233 -0.22111.8861 1.0550 -1.3336 -0.9907 0.8222 -1.6758-0.2200 -0.1667 0.3873 -0.0498 -1.4143 。
10、-1.6981-1.4144 0.3145 -0.0228 0.7193 1.1437 -0.1085-0.3028 1.4196 0.1106 -0.2831 0.9790 -0.3008-0.5696 0.3273 0.8128 -1.4250 0.4926 -1.3683-0.1215 0.4757 -1.0091 0.4615 1.2579 0.7377-0.3902 0.3988 -1.0046 1.0915 0.5941 -0.4043-0.8443 -0.0728 0.2830 -1.0443 0.4545 0.8568-1.7378 1.3148 0.2898 -2.8428 。
11、-1.4178 3.3437-0.4495 0.9783 -0.2473 0.9968 -0.9199 0.6265-1.5479 1.7221 -0.2189 0.0765 -1.4481 1.2796-0.0958 -0.4123 0.8987 -1.8667 -1.4813 -0.74120.9077 0.5651 -0.6422 -0.6136 0.0973 1.03412.3696 0.7399 -0.1804 1.1694 -0.2263 -0.61820.5198 0.2201 0.7179 -0.5750 -0.3172 0.42380.4105 1.3128 0.3014 -。
12、0.2648 0.6340 0.89491.0526 0.6292 1.5489 0.0047 0.0390 -0.23750.4288 -1.1080 -0.0442 -0.0394 -0.0164 -0.12791.2951 -0.4470 -0.0297 -0.5054 0.4495 1.0195-0.1861 -0.7260 -0.3821 -1.1578 -0.5223 1.74840.1307 0.3540 -0.5539 0.7104 -1.0551 0.9875-0.6576 -0.5068 0.9324 0.7282 -0.0478 -0.4201-0.7593 -2.103。
13、7 -1.3158 0.8669 -0.4990 -0.3337-0.5952 -0.6647 -0.3015 2.4316 1.6275 -0.85780.8124 1.4501 -2.5996 0.1102 -0.2390 -0.77160.0695 -0.3298 0.7801 0.0264 -0.9617 1.4643-1.8337 2.7019 0.6029 0.9703 -0.1527 1.09181.8274 -1.6349 0.9428 -0.0053 1.6830 -0.21680.6541 -0.5363 -1.0239 1.4095 1.5551 1.4199-1.544。
14、8 0.5472 -0.0678 1.7579 -1.0502 0.6269-0.3751 1.4926 0.0818 0.8850 0.0967 2.22150.2077 -0.4552 -1.7670 1.1409 0.2516 -1.2924-0.7656 -0.4964 -1.7813 0.4032 2.2472 1.1703-0.1064 1.2353 -0.6604 0.1910 0.3105 -1.17890.3388 0.0409 1.3514 -0.6936 1.9916 -0.56791.0335 0.7485 2.1364 0.0110 -0.1193 1.1773-1.。
15、4048 1.2308 0.1668 -1.1056 -0.2727 0.2257-1.0306 0.3049 -1.7052 1.9080 1.4445 0.7576-0.6434 1.0778 0.2765 -0.1654 -0.0744 -0.84840.1708 0.7652 0.3945 -0.7324 -0.3625 1.85951.3448 -1.3196 -0.0986 -0.9907 -0.7770 -0.03601.9363 -0.5092 0.1764 0.8943 -0.2501 2.59150.7413 0.5551 -1.8379 0.4482 -0.4187 -0。
16、.69130.8120 -1.9576 -1.5023 0.8892 1.4149 -1.5765-0.1428 -0.7605 0.8192 1.0733 -0.8474 -0.6101-0.0999 -2.4439 -0.2346 -0.1047 0.1661 0.3767-0.8001 -0.6594 -1.6316 1.5473 -0.0482 1.27280.4932 -0.1148 -0.3179 0.1698 -2.9772 -0.59181.2376 0.3001 -0.7963 0.8040 1.0070 2.24961.2960 -0.5840 0.6908 -1.7240。
17、 0.8844 -0.0163-0.2782 -3.0737 -0.0420 0.1741 -0.4059 0.73580.2171 1.5510 0.3240 -0.4841 -2.6192 -0.64090.6307 -0.4074 0.5065 -0.7316 -0.9686 1.4443-0.5485 1.4281 -1.0286 -2.1319 0.5553 -1.15900.2296 -1.3532 0.0994 -1.8104 0.7595 0.68630.3553 0.9040 -0.1164 -0.0523 -0.5720 0.73040.5213 0.5417 0.6892。
18、 -0.0862 1.1580 0.5145-0.6160 -0.4650 1.8833 -1.1897 -0.3080 1.69581.3458 2.4304 0.3254 -0.7541 0.0032 -0.67630.9749 2.0205 -0.0952 0.9473 -1.4061 3.4128-2.3779 0.7973 0.0312 -0.1826 1.6241 -0.3947-1.0923 0.0310 -0.6138 -0.0663 0.1396 1.2059-0.3257 0.5407 -1.7313 0.9050 -1.8166 0.3078-2.0122 0.6839 。
19、0.4788 1.4582 -2.7892 -0.48641.5677 -0.5901 -0.4478 -1.1180 0.2624 -0.33100.2333 -0.2611 0.3868 1.8133 0.1192 0.77670.6464 1.5171 0.0530 0.1508 0.3323 -0.3327-1.1294 1.0073 -0.4861 -0.2830 -0.4465 2.09630.1970 0.3034 0.2445 1.6501 0.0052 0.38881.6969 -0.8171 0.7183 0.6664 -0.2061 -0.65250.7260 -0.49。
20、12 0.1535 -0.3464 0.0495 -0.05680.7925 0.8675 0.1338 -0.2640 0.9260 0.42250.6034 0.3608 -1.0062 -0.6443 0.3508 -0.0749-0.0584 -0.0804 1.3065 -0.9055 -0.7958 0.7867-1.1087 0.7493 1.1991 0.7167 -0.6222 -0.13712.1442 -1.7920 -2.5773 -0.0073 1.4299 0.6365-1.3528 1.2132 -2.0863 -2.8148 -2.0849 1.57810.45。
21、70 -0.0605 0.3861 -0.1495 0.0337 -0.03090.3912 -0.3925 -0.8610 0.5775 -0.0157 0.31632.0730 0.6095 -1.2308 0.7531 -0.5543 1.9848-0.3233 0.6436 2.6416 -0.1670 -1.1636 -0.64501.4681 1.0195 -0.9044 -0.5818 0.1000 0.3133-0.5024 0.9344 -1.2233 0.3658 0.4783 1.59240.2096 1.2286 0.3032 -0.5489 1.7747 -0.973。
22、20.7548 -0.2495 -0.7301 0.5787 -0.4705 -1.1477-0.9482 -0.7076 -1.1436 -1.9558 -0.9253 -1.48450.6132 -0.5938 -1.4132 0.5220 0.0015 -0.96611.7605 -0.2623 -0.5918 1.6011 0.6373 -0.03970.0888 1.2428 0.5189 0.7326 -1.5689 -2.12192.5956 -1.5489 -1.4928 0.5557 0.7002 -1.8364-0.6755 -0.3868 -0.0867 -0.8133 。
23、0.9738 -1.54202.7868 0.2751 -0.0126 -0.5390 -0.0705 -0.2354-0.0168 0.8262 -0.3459 1.3079 -0.0337 1.19940.2717 -0.9793 0.9863 -0.4826 0.3025 -0.0332-0.9141 -0.1043 0.6433 -1.7524 -0.6566 -0.5414-1.9514 0.1278 2.9199 -0.9266 -0.0522 -0.0674-0.3174 0.0625 -1.2486 0.9224 0.7732 2.25600.5883 0.3716 0.157。
24、1 0.0410 -0.3199 0.21240.8290 -0.1040 0.7887 0.4136 -1.1206 0.1884-1.6749 -0.6968 -0.5771 0.5972 1.4606 0.2847-1.9223 -0.3868 0.5276 1.9243 0.4091 -1.5296-0.4367 0.0161 1.6717 0.7141 1.1326 -2.37020.0450 1.3692 0.8001 -2.3123 0.5700 -2.03212.4166 0.4169 0.8838 1.3807 -0.9177 1.2202-0.3099 0.0687 -0.。
25、2242 1.3907 1.7010 -0.36480.1876 0.2942 0.2970 -0.4539 -0.0248 -0.63280.9477 0.4726 -0.5210 -0.6283 -0.7698 -0.2226-0.5257 1.7827 -0.1554 1.0232 -0.8375 0.1806-1.1156 0.2606 -0.0985 -0.4891 -0.0918 0.8971-1.5923 1.5107 0.9972 -0.4024 0.6301 -1.23051.1748 0.3170 0.4345 1.3997 0.3845 0.12540.4851 0.80。
26、35 -0.0257 0.2806 -0.6099 0.80741.6455 0.5809 -0.3799 1.8809 -0.4137 -1.0653-0.4542 1.7786 -0.2424 -0.7997 1.1181 -2.00911.0088 -0.9381 -1.1651 -0.5607 -0.7003 0.24322.0494 -0.9167 0.7566 1.7089 -0.3501 0.14950.6020 0.3760 1.1642 -0.6448 1.8168 2.60780.0179 0.9098 -1.0235 -1.4225 -1.6401 -0.0532-1.6。
27、104 0.1542 1.7016 -0.7559 0.2771 -0.01471.2388 -0.2023 -0.4942 0.1575 -0.6745 -0.51670.6836 1.4887 0.1727 0.3783 0.2039 1.2073-0.7807 -0.6216 0.3541 0.1787 1.3074 0.11080.5310 0.8095 -0.2463 -0.6028 0.4621 1.69352.1345 1.9288 -0.1457 -0.9934 1.2885 0.45730.3544 0.3961 -1.1690 1.1889 -0.9561 1.06710.。
28、2317 -0.8614 -0.0220 2.3880 1.1957 -0.12761.2880 2.4319 0.6183 2.2655 -0.4056 0.1880-0.0135 -0.8405 1.8659 2.3011 -0.6034 -0.4533-1.3333 0.2805 0.0819 -0.2701 1.8336 -0.6201-0.5563 0.8204 1.6080 0.5028 -0.9653 -1.92540.7556 1.2278 -0.3807 -0.1192 -0.3970 -1.4255-0.9119 -0.0636 -1.2996 -0.0019 0.0898。
29、 0.26801.3717 0.6453 -0.7240 -0.4326 0.2640 -0.36260.2456 -1.7713 -0.5650 -0.1948 0.2922 -0.98410.1188 0.0596 0.6217 0.9854 0.7818 1.36500.3847 -0.7602 -1.3355 0.4686 0.4040 0.8670-0.0702 -1.6909 -0.1231 -1.3649 -0.3254 -0.4289-0.5783 1.1037 -1.1028 0.2737 -0.3739 0.97180.4693 1.4625 -2.7532 2.6467 。
30、-0.2943 -1.14351.2997 0.2362 0.2520 -0.0538 -1.7179 2.04771.6348 -1.0977 -0.8581 0.4725 -0.0539 0.0078-0.7028 2.4152 1.1354 -2.0800 0.2179 0.74680.8073 -0.4021 -0.2979 -0.8025 2.1732 0.5396-1.0275 0.9141 1.1543 -0.4568 0.5724 -0.69181.2945 -0.1360 1.0461 0.1939 0.8150 1.08410.0149 1.3142 2.1269 0.88。
31、95 -1.0789 0.62940.2187 0.3224 -0.6558 -1.5917 -0.5799 -0.75611.7132 -0.4765 -1.1424 -0.3220 -1.8757 0.2388-2.0788 0.0762 0.9490 -0.7038 0.9175 -1.20330.1129 -0.1051 -0.4046 -0.7443 -0.5469 -0.3082-1.0865 1.4170 -0.3843 0.3713 -0.6051 -1.5379-1.5583 0.7079 0.4820 1.4373 0.0253 -0.62030.6374 0.3679 0。
32、.4438 0.4599 0.2615 -0.2148-0.4046 -0.6028 0.3811 0.6607 0.7435 1.0820-0.4033 -0.8521 1.1023 1.1244 -0.1620 -0.17100.0841 0.6551 0.8564 0.9794 0.4357 -0.8103-0.4353 1.4702 -1.1785 -1.3164 0.8613 -0.0057-0.5626 -0.8104 0.4020 -0.0232 0.0641 -1.16290.8781 -1.2762 -0.5842 0.1345 -1.7273 -0.6471-0.8146 。
33、1.7223 -0.9795 2.4081 0.7160 1.5723-0.2584 0.1019 0.1151 0.9017 0.0366 0.13020.4933 -0.8020 0.0685 0.0762 -0.1849 -0.8043-0.8027 -1.2508 -0.5299 0.3617 -0.8147 -0.1024-0.0083 1.2377 0.5411 -2.0587 0.9900 -0.66760.6276 1.5282 0.6817 -2.3320 -1.7817 -0.70570.1544 1.7769 0.5386 -0.3709 -0.0440 -0.22012。
34、.5807 0.6312 -0.5100 1.2857 0.8902 -0.4506-1.3062 0.0833 -1.3221 0.5570 -0.4561 0.14081.0235 2.1400 -0.6107 -0.1802 -1.9037 1.58140.7778 1.2635 -0.5653 -0.0357 -0.3921 -0.2971-0.8339 -1.7506 0.0862 1.9344 -1.1070 -0.3513-0.5867 -0.0144 0.6915 1.3056 1.7575 0.87254、首先生成正态分布的容量为的随机数的样本,然后画正态分布的直方图。解:编。
35、程求解: x=normrnd(0,16,300,1); hist(x,7)图像:练习5.51. 泥厂用自动包装机包装水泥,每袋额定重量是,某日开工后随机抽查了袋,称得重量如下:49.6 49.3 50.1 50.0 49.2 49.9 49.8 51.0 50.2.设每袋重量服从正态分布,问包装机工作是否正常?(取显著性水平.)解:假设检验:编程如下: x=49.6 49.3 50.1 50.0 49.2 49.9 49.8 51.0 50.2; h,sig,ci=ttest(x,50)h = 0sig = 0.5911ci = 49.4878 50.3122检验结果为:布尔值h=0说明表示在。
36、显著性水平为0.05下接受原假设,说明包装机工作正常。置信水平为0.95的置信区间为,它包含50,因此接受原假设。,也说明能接受“包装机正常工作”的假设。2. 某工厂生产的某种型号的电池,其寿命(以小时计)长期以来服从方差为5000的正态分布,现有一批这种电池,从它的生产情况来看,寿命的波动性有所改变.现随机取26只电池,测出其寿命的样本方差.问根据这一数据能否推断这批电池的寿命的波动性较以往的有显著的变化?(取显著性水平.)解:假设检验:编程如下:建立M文件,命名为:Untitledsigma0=5000; % 总体原始方差sigma1=9200; % 样本方差alpha=0.05; % 显。
37、著性水平n=26; % 样本容量chi2stat=(n-1)*sigma1/sigma0; % 卡方检验统计量criticalValue1 =chi2inv(alpha/2,n-1); % 临界值criticalValue2=chi2inv(1-alpha/2,n-1); % 临界值if (chi2statcriticalValue1&chi2stat x1=119 118 117 123 121 113 109 127 116 116 112 114 125 114 110; x2=116 110 117 121 113 106 113 108 118 124 118 104; subplo。
38、t(1,2,1);normplot(x1);subplot(1,2,2);normplot(x2)图像:由于正太概率图都显示出直线形态,因此数据x1和数据x2都可以认为如从正态分布.检验编程如下: x1=119 118 117 123 121 113 109 127 116 116 112 114 125 114 110; x2=116 110 117 121 113 106 113 108 118 124 118 104; pt,sigt=ttest2(x1,x2)pt = 0sigt = 0.1945可见,男、女生数学成绩不相上下,没有显著差异,接受假设。4、下面列出84个伊特拉斯坎男子头。
39、颅的最大宽度(单位:mm):141 148 132 138 154 142 150 146 155 158 150 140 147 148 144 150 149 145 149 158 143 141 144 144 126 140 144 142 141 140 145 135 147 146 141 136 140 146 142 137 148 154 137 139 143 140 131 143 141 149 148 135 148 152 143 144 141 143 147 146 150 132 142 142 143 153 149 146 149 138 142 14。
40、9 142 137 134 144 146 147 140 142 140 137 152 145请检验上述头颅的最大宽度数据是否来自正态总体?(显著性水平.)解:编程:x=141 148 132 138 154 142 150 146 155 158 150 140 147 148 144 150 149 145 149 158 143 141 144 144 126 140 144 142 141 140 145 135 147 146 141 136 140 146 142 137 148 154 137 139 143 140 131 143 141 149 148 135 148 1。
41、52 143 144 141 143 147 146 150 132 142 142 143 153 149 146 149 138 142 149 142 137 134 144 146 147 140 142 140 137 152 145; normplot(x)图像:由于正太概率图都显示出直线形态,因此数据x1和数据x2都可以认为如从正态分布.5、在一批灯泡中抽取300只做寿命试验,获得的数据见下表.寿命t/h灯泡数121784358对于给定的显著性水平,问这批灯泡的寿命是否服从指数分布解:编程: t=0:100:300; h=121 78 43 58; pi=0.005*exp(-t。
42、*0.005)pi = 0.0050 0.0030 0.0018 0.0011 t=400 500 600 700; sum(0.005*exp(-t*0.005)ans = 0.0015 n=300; sum(h-n*pi).2/(n*pi)ans = 8.2806e+003 syms x ff=(x)(chi2pdf(x,4); p=quadl(ff,ans,10000)p = 0由于,所以显著性水平下,这批灯泡的寿命不如从指数分布。6.谋电话站在一个小时内接到电话用户的呼叫次数按每分钟记录如下表.呼叫次数0123456频数81617106210问在显著性说平时,在一个小时内接到电话用户的。
43、呼叫次数能否看作来自泊松分布?解:编程求解: i=0:1:7; ni=8 16 17 10 6 2 1 0; sum(i.*ni)./60)ans = 2 pi=(2.i)./factorial(i).*exp(-2)pi = Columns 1 through 6 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361Columns 7 through 8 0.0120 0.0034 i=8 9 10 11 12 13 14 15; sum(2.i)./factorial(i).*exp(-2)ans = 0.0011 n=60; sum(ni-n*pi).2).。
44、/(n*pi)ans = 0.4937 syms x ff=(x)(chi2pdf(x,8); p=quadl(ff,0.4937,10)p = 0.7348由于,所以显著性水平下,可以认为“在一小时接到电话用户的呼叫次数如从泊松分布。练习5.61. 某地区车祸次数(千次)与汽车拥有量(万辆)的11年统计数据如下表.年度1234567891011汽车拥有量/万辆325373411411462490529577641692743车祸次数/千次166153177201216208227238268268274(1) 作和的散点图;(2)如果从(1)中的散点图大致可以看出对是线性的,试求线性回归方程。
45、;(3)验证回归方程的显著性(显著性水平);(4)假设拥有800万辆汽车,求车祸次数置信水平为0.95的预测区间.解:(1)编程如下: x=352 373 411 411 462 490 529 577 641 692 743; y=166 153 177 201 216 208 227 238 268 268 274; plot(x,y,*)图像: X=ones(11,1),x; b,bint,r,rint,s=regress(y,X,0.05)b = 55.85270.3120bint = 23.0712 88.63420.2506 0.3734r = 0.3364-19.2149-7.0。
46、6957.571716.0204-0.71456.11892.144712.1791-3.7311-13.6412rint =-22.7953 23.4680-37.2950 -1.1347-30.9881 16.8492-16.7413 31.8846-5.7896 37.8305-26.2054 24.7763-18.9682 31.2061-23.0862 27.3756-10.0894 34.4475-26.4931 19.0310-31.5901 4.3077s = 0.9362 132.0614 0.0000 124.9076因此,的置信水平为0.95的置信区间为,的置信水平为0.。
47、95的置信区间为由以上计算结果可知,回归模型成立. z=inline(-143.4531+3.0296*x,x); x=800; z(x)ans =305.45272. 现对具有统计关系的两个变量的取值情况进行13次试验得到如下数据234578100.93970.92420.91260.91320.90910.90970.90511114151618190.90420.90420.90170.90290.90090.8993求回归曲线方程.解:令,则回归曲线方程为:,编程求解: x=2 3 4 5 7 8 10 11 14 15 16 18 19; y=0.9397 0.9242 0.9126。
48、 0.9132 0.9091 0.9097 0.9051 0.9042 0.9042 0.9017 0.9029 0.9009 0.8993; X=ones(13,1),x; b=regress(1./y),1./X)b = 1.1149-0.0983因此,即回归曲线方程为:3、一种合金在某种添加剂的不同浓度下,各做三次试验,得到数据如下表:浓度1015202530抗压强度25.229.831.231.729.4抗压强度27.331.132.630.130.8抗压强度28.727.829.732.332.8(1) 作散点图;(2)以模型拟合数据,其中与无关;(3)求回归方程并作回归分析.解:编程: x1=10 15 20 25 30; y1=25.2 29.8 31.2 31.7 29.4; y2=27.3 31.1 32.6 30.1 30.8; y3=28.7 27.8 29.7 32.3 32.8; plot(x1,y1,+,x1,y2,o,x1,y3,*)图像:编程拟合:建立M文件:fun.munction f=fun(c,x)f=c(1)+c(2)*x+c(3)*x2;在命令窗口输入: x=10:5:30; y1=25.2 29.8 31.2 31.7 29.4; y2=27.3 3。