python meshgrid函数_numpy之meshgrid和where

meshgrid

np.meshgrid()

np.meshgrid从坐标向量返回坐标矩阵。

这样说可能很抽象。举个例子。

x = np.arange(-2,2)

y = np.arange(0,3)#生成一位数组,其实也就是向量

x

Out[31]: array([-2, -1, 0, 1])

y

Out[32]: array([0, 1, 2])

z,s = np.meshgrid(x,y)#将两个一维数组变为二维矩阵

z

Out[36]:

array([[-2, -1, 0, 1],

[-2, -1, 0, 1],

[-2, -1, 0, 1]])

s

Out[37]:

array([[0, 0, 0, 0],

[1, 1, 1, 1],

[2, 2, 2, 2]])

从代码上看,我们得到了这样一组值:

-2, -1, 0, 1,---- 0, 0, 0, 0

-2, -1, 0, 1,---- 1, 1, 1, 1

也就是说,它将 x 变成了矩阵 z 的行向量,y 变成了矩阵 s 的列向量。

反过来,也是一样的:

z,s = np.meshgrid(y,x)

z

Out[40]:

array([[0, 1, 2],

[0, 1, 2],

[0, 1, 2],

[0, 1, 2]])

s

Out[41]:

array([[-2, -2, -2],

[-1, -1, -1],

[ 0, 0, 0],

[ 1, 1, 1]])

以上面这个例子来说,z 和 s 就构成了一个坐标矩阵,实际上也就是一个网格,不知道你没有注意到,z 和 s 的维数是一样的,是一个4 × 4的网格矩阵,也就是坐标矩阵。

meshgrid 方法的参数数量不受限,可以得到任意 N 维空间中的坐标矩阵。

注意到,传入的对象是一维的。

想到这里,我觉得,这可能和方程式有关系(很可能我的感觉是错的,等以后发现再改这句话,但是我觉得这样的话,会很好理解这个函数方法),也就是行列式,但是方程式的右侧的 y 只有一列。

a1x1 + b1x2 + c1x3 + d1x4 + ...... =y1

a2x1 + b2x2 + c2x3 + d2x4 + ...... =y2

...

...

x, y = np.meshgrid(np.arange(-1, 1, 0.01), np.arange(-1, 1, 0.01))

contor = np.sqrt(x ** 2 + y ** 2)

plt.imshow(contor)

plt.colorbar()

plt.show()

结果

np.where()

where(condition, [x, y]) 当condition为True时,返回 x , 否则返回 y。

其实,在x, y 为一维数组时,就相当于:

[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

测试:

In [3]: x = np.arange(9).reshape(3,3)#创建一个3×3的矩阵

In [4]: x

Out[4]:

array([[0, 1, 2],

[3, 4, 5],

[6, 7, 8]])

In [5]: np.where(x>4) #只输入condition

Out[5]: (array([1, 2, 2, 2], dtype=int64), array([2, 0, 1, 2], dtype=int64))

In [6]: np.where(x>7)# 只输入condition

Out[6]: (array([2], dtype=int64), array([2], dtype=int64))

通过上面的例子,我们可以发现,只输入condition的话,得到的结果是一个位置索引。它们就是满足条件的元素的索引,即为True的元素。

说明下:返回的第一个第一个数组为行坐标,第二个为纵坐标。

我们还可以用where来这样做:

In [8]: y = np.random.randn(3,3)

In [9]: y

Out[9]:

array([[ 1.59809956, -0.42735851, 1.46593089],

[-0.26497622, 0.53948157, -2.01569974],

[-0.11099139, -1.70616601, -1.34821361]])

In [10]: np.where(y > 0, 4, -4)

Out[10]:

array([[ 4, -4, 4],

[-4, 4, -4],

[-4, -4, -4]])

很显然,np.where()是可以嵌套使用的,其类似于if..elif...else...,如果我们有多个条件的话。

大家都知道,布尔值在计算过程中是可以当做0和1处理的。

因此,我们还可以这样:

result = 3 * (con2 & -cond1) + 2 * - (cond1 | cond2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值