r语言 线性回归 相关系数_R语言缺失值的处理:线性回归模型插补

原文链接:

拓端数据科技 / Welcome to tecdat​tecdat.cn
d40cb45f5aa6355c38a1f281ea5eee6e.png

692873f585049e3d94f81351a3e05404.png

在当我们缺少值时,系统会告诉我用-1代替,然后添加一个指示符,该变量等于-1。这样就可以不删除变量或观测值。


视频

缺失值的处理:线性回归模型插补


我们在这里模拟数据,然后根据模型生成数据。未定义将转换为NA。一般建议是将缺失值替换为-1,然后拟合未定义的模型。默认情况下,R的策略是删除缺失值。如果未定义50%,则缺少数据,将删除一半的行


  1. n=1000

  2. x1=runif(n)

  3. x2=runif(n)

  4. e=rnorm(n,.2)

  5. y=1+2*x1-x2+e

  6. alpha=.05

  7. indice=sample(1:n,size=round(n*alpha))

  8. base=data.frame(y=y,x1=x1)

  9. base$x1[indice]=NA

  10. reg=lm(y~x1+x2,data=base)

我们模拟10,000,然后看看未定义的分布,


  1. m=10000

  2. B=rep(NA,m)

  3. hist(B,probability=TRUE,col=rgb(0,0,1,.4),border="white",xlab="missing values = 50%")

  4. lines(density(B),lwd=2,col="blue")

  5. abline(v=2,lty=2,col="red")

41583c78174eb302923f431e4e010035.png

当然,丢失值的比率较低-丢失的观测值较少,因此估计量的方差较小。

d7c160ac8074e0bff6379c9f2fef86aa.png

现在让我们尝试以下策略:用固定的数值替换缺失的值,并添加一个指标,


  1. B=rep(NA,m)

  2. hist(B,probability=TRUE,col=rgb(0,0,1,.4),border="white")

  3. lines(density(B),lwd=2,col="blue")

  4. abline(v=2,lty=2,col="red")

a3151994bc778ec539b406dc14441d62.png

不会有太大变化,遗漏值的比率下降到5%,

8c0e63c43dbab4c7d7fb4676dcc28b22.png

例如仍有5%的缺失值,我们有

7441b251061476295e86f23a9d7b35e6.png

如果我们查看样本,尤其是未定义的点,则会观察到

6952925fca69c15fb602f318fcb50eb4.png

缺失值是完全独立地随机选择的,


  1. x1=runif(n)

  2. plot(x1,y,col=clr)

c0340df7e91ae30ffe7d00b975c841d2.png

(此处缺失值的1/3为红色)。但可以假设缺失值的最大值,例如,


  1. x1=runif(n)

  2. clr=rep("black",n)

  3. clr[indice]="red"

  4. plot(x1,y,col=clr)

44f72969020063145ade845d2b33db8d.png

有人可能想知道,估计量会给出什么?

eb0944336db8bd8d0b1ee6db2c3cb3e1.png

它变化不大,但是如果仔细观察,我们会有更多差异。如果未定义变量会发生什么,


  1. for(s in 1:m){

  2. base$x1[indice]=-1

  3. reg=lm(y~x1+x2+I(x1==(-1)),data=base)

  4. B[s]=coefficients(reg)[2]

  5. }

457355c48a6bf34188e66c2a01515d0a.png

这次,我们有一个有偏差的估计量。


  1. set.seed(1)

  2. indice=sample(1:n,size=round(n*alpha),prob = x1^3)

  3. base$x1[indice]=-1

  4. coefficients(reg1)

  5. (Intercept) x1 x2 I(x1 == (-1))TRUE

  6. 1.0988005 1.7454385 -0.5149477 3.1000668

  7. base$x1[indice]=NA

  8. coefficients(reg2)

  9. (Intercept) x1 x2

  10. 1.1123953 1.8612882 -0.6548206

正如我所说的,一种更好的方法是推算。这个想法是为未定义的缺失预测值预测。最简单的方法是创建一个线性模型,并根据非缺失值进行校准。然后在此新基础上估算模型。


  1. for(s in 1:m){

  2. base$x1[indice]=NA

  3. reg0=lm(x1~x2,data=base[-indice,])

  4. base$x1[indice]=predict(reg0,newdata=base[indice,])

  5. reg=lm(y~x1+x2,data=base)

  6. }

  7. hist(B,probability=TRUE,col=rgb(0,0,1,.4),border="white")

  8. lines(density(B),lwd=2,col="blue")

  9. abline(v=2,lty=2,col="red")

cce01300e01adb61a2851d655618b577.png

在数字示例中,我们得到


  1. base$x1[indice]=NA

  2. coefficients(reg3)

  3. (Intercept) x1 x2

  4. 1.1593298 1.8612882 -0.6320339

这种方法至少能够纠正偏差

然后,如果仔细观察,我们获得与第一种方法完全相同的值,该方法包括删除缺少值的行。


  1. Coefficients:

  2. Estimate Std. Error t value Pr(>|t|)

  3. (Intercept) 1.15933 0.06649 17.435 < 2e-16 ***

  4. x1 1.86129 0.21967 8.473 < 2e-16 ***

  5. x2 -0.63203 0.20148 -3.137 0.00176 **

  6. ---

  7. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

  8. Residual standard error: 1.051 on 997 degrees of freedom

  9. Multiple R-squared: 0.1094, Adjusted R-squared: 0.1076

  10. F-statistic: 61.23 on 2 and 997 DF, p-value: < 2.2e-16

  11. Coefficients: Estimate Std. Error t value Pr(>|t|)

  12. (Intercept) 1.11240 0.06878 16.173 < 2e-16 ***

  13. x1 1.86129 0.21666 8.591 < 2e-16 ***

  14. x2 -0.65482 0.20820 -3.145 0.00172 **

  15. ---

  16. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

  17. Residual standard error: 1.037 on 797 degrees of freedom

  18. (200 observations deleted due to missingness)

  19. Multiple R-squared: 0.1223, Adjusted R-squared: 0.12

  20. F-statistic: 55.5 on 2 and 797 DF, p-value: < 2.2e-16

除了进行线性回归外,还可以使用另一种插补方法。

在模拟的基础上,我们获得


  1. for(j in indice) base0$x1[j]=kpp(j,base0,k=5)

  2. reg4=lm(y~x1+x2,data=base)

  3. coefficients(reg4)

  4. (Intercept) x1 x2

  5. 1.197944 1.804220 -0.806766

如果我们看一下10,000个模拟中的样子,就会发现


  1. for(s in 1:m){

  2. base0=base

  3. for(j in indice) base0$x1[j]=kpp(j,base0,k=5)

  4. reg=lm(y~x1+x2,data=base0)

  5. B[s]=coefficients(reg)[2]

  6. }

  7. hist(B,probability=TRUE,col=rgb(0,0,1,.4),border="white")

  8. lines(density(B),lwd=2,col="blue")

  9. abline(v=2,lty=2,col="red")

fb56f5a20a7720a1c21b07ccf46ea58d.png

这里的偏差似乎比没有插补时要弱一些,换句话说,在我看来,插补方法似乎比旨在用任意值替换NA并在回归中添加指标的策略更强大。

参考文献

1.用SPSS估计HLM层次线性模型模型

2.R语言线性判别分析(LDA),二次判别分析(QDA)和正则判别分析(RDA)

3.基于R语言的lmer混合线性回归模型

4.R语言Gibbs抽样的贝叶斯简单线性回归仿真分析

5.在r语言中使用GAM(广义相加模型)进行电力负荷时间序列分析

6.使用SAS,Stata,HLM,R,SPSS和Mplus的分层线性模型HLM

7.R语言中的岭回归、套索回归、主成分回归:线性模型选择和正则化

8.R语言用线性回归模型预测空气质量臭氧数据

9.R语言分层线性模型案例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值