pta函数统计素数并求和_当数论遇上分析——拉马努金和与欧拉函数的故事

本文探讨了从离散傅立叶变换(DFT)到拉马努金和的数学联系,揭示了拉马努金和的对称性和与欧拉函数的交互。通过欧拉函数与Fourier变换的关系,可以不需要分解n来计算欧拉函数,同时,拉马努金和对理解Zeta函数的奇数值公式也有所助益。
摘要由CSDN通过智能技术生成

从DFT到拉马努金和

定义数论函数

,设其离散Fourier变换为F(n,k),则有:

光留着这个表达式也不是个滋味儿,我们不妨利用gcd重排一下求和:

事实上,所有满足

的m都满足
。而又因为
,我们的求和式可以被改写成:

现在定义函数

,则原式等于:

所以其实这种特殊的DFT可以被转化为Dirichlet卷积。而

被称为
拉马努金和(Ramanujan sum)

拉马努金和的性质

1、对称性:

证明:事实上根据
有:

现在我们更改求和顺序
,得:

由于
,j的范围可以改为
,又因为
,我们有:

证毕

由拉马努金和的对称性可知

,因此可以改写成

2、

证明:根据莫比乌斯反演公式,有
[1],因此有:

可知
。因此令
可得:

为了解决最后一个求和式,我们要研究一下求和式
的性质:

时原式为
,而当
时根据
有:

因此
,代入回(a)式可得:

根据最大公因数的定义,可知
,于是:

证毕

这个结果的一个显然推论是

,于是:

事实上拉马努金和也可以帮助我们研究欧拉函数的性质

3、

证明:
可知
刚好计算的是n以内与n互素数的数量,即

因为

,所以根据性质2有
。又根据
可知

欧拉函数与Fourier变换

现在设

则有
事实上根据(1)式和
,有:

这个公式允许我们在不对n进行分解的情况下计算

欧拉函数与Zeta函数

根据Dirichlet级数的性质

,有:

引入

[2],可得:

这意味着:

因此当有人拿出Zeta函数偶数值的计算公式装13时:

你便可以用Zeta函数奇数值公式回怼(doge:

事实上拉马努金和的应用远远不止这点。这篇文章的结尾目前比较草率。作者在完成更多相关的学习后会不断对本篇文章的内容进行补充。

参考

  1. ^若a为真[a]=1若a为假则[a]=0
  2. ^读懂黎曼猜想(1)——莫比乌斯反演 - 知乎 https://zhuanlan.zhihu.com/p/151302308
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值