终于把排序这个硬骨头,但是又很基础的知识点,自己手撕了一遍!之前,使用Python看着算法导论的书手撕过一遍,印象不是很深刻,容易忘记!好记性不如烂笔头!多自己思考解决问题
1,交换类CAS【最简单】
稳定,n^2
1.1冒泡法【①普通冒泡;②鸡尾酒法】
packagecom.cnblogs.mufasa.demo1_CAS;importorg.junit.Test;public classSolution1_bubble {//1,普通冒泡,由左及右一遍遍来刷,时间复杂度O(n^2)
public void normal_Bubble(int[] nums){//默认直接,小到大
int len=nums.length;for(int i=0;inums[j+1]){int temp=nums[j+1];
nums[j+1]=nums[j];
nums[j]=temp;
}
}
}
}//2,鸡尾酒冒泡,左右左右变换,时间复杂度O(n^2)但是理论上更加优化
public void cocktail_Bubble(int[] nums) {int len =nums.length;int x=0,y=len-1;while (xnums[i+1]){int temp=nums[i+1];
nums[i+1]=nums[i];
nums[i]=temp;
}
}
y--;for(int i=y;i>0;i--){if(nums[i]
nums[i-1]=nums[i];
nums[i]=temp;
}
}
}
}public void printOut(int[] nums){//int len=nums.length;
for(inttemp:nums){
System.out.print(temp+",");
}
System.out.println();
}
@Testpublic voidtest(){int[] nums={5,14,478,6,41,698,14,5,3};
printOut(nums);//normal_Bubble(nums);
cocktail_Bubble(nums);
printOut(nums);
}
}
View Code
图-普通冒泡排序
图-鸡尾酒排序
1.2快速排序【①单边循环快排;②双边循环快排】
CAS排序的一种,时间复杂度平均为O(nlogn),最坏为O(n^2)
packagecom.cnblogs.mufasa.demo1_CAS;importorg.junit.Test;public classSolution2_quick {//1,单边循环法,快排
public void quick_sort1(int[] nums){
sin_Quick1(nums,0, nums.length-1);//前闭后闭
}private void sin_Quick1(int[] nums,int x,inty) {if (y - x == 1) {if (nums[x] >nums[y]) {int temp =nums[x];
nums[x]=nums[y];
nums[y]=temp;
}return;
}else if (x >=y) {return;
}int mark=x,povit=nums[x];for(int i=x;i<=y;i++){if(nums[i]
mark++;int temp=nums[i];
nums[i]=nums[mark];
nums[mark]=temp;
}
}int temp=nums[mark];
nums[mark]=nums[x];
nums[x]=temp;
sin_Quick1( nums, x, mark-1);
sin_Quick1( nums, mark+1, y);
}//2,双边循环法,快排
public void quick_sort2(int[] nums){
sin_Quick2(nums,0, nums.length-1);//前闭后闭
}private void sin_Quick2(int[] nums,int x,inty){if(y-x==1){if(nums[x]>nums[y]){int temp=nums[x];
nums[x]=nums[y];
nums[y]=temp;
}return;
}else if(x>=y){return;
}int pivot=nums[x];int left=x,right=y;boolean flag=true;while (left
right--;
}else{
flag=false;
}
}else{if(nums[left]<=pivot){
left++;
}else{int temp=nums[left];
nums[left]=nums[right];
nums[right]=temp;
flag=true;
right--;
}
}
}int temp=nums[left];
nums[left]=nums[x];
nums[x]=temp;
sin_Quick2(nums,x,left-1);
sin_Quick2(nums,left+1,y);
}public void printOut(int[] nums){for(inttemp:nums){
System.out.print(temp+",");
}
System.out.println();
}
@Testpublic voidtest(){int[] nums={13,14,478,6,41,698,12,5,3};//int[] nums={5,2,9,6,1,0,3,7,8};
printOut(nums);
quick_sort1(nums);//quick_sort2(nums);
printOut(nums);
}
}
View Code
图-快速排序
2,选择排序【最简单】
原理:每次选择极值往同一个方向推过去,有点像这样:我们在垃圾堆里找值钱的物件,每次找最值钱的那一件丢到我们的蛇皮袋子中,下一次在剩余的垃圾中找最值钱的物件,再次丢到我们的宝贝蛇皮袋子里,依次循环,那么最后我们完成地球清洁工作后,我们的蛇皮袋子里的垃圾价值由下到上价值依次递增!!!这个就是普通的选择排序!!!不稳定,n^2;不稳定的原因:由小到大排序下面的数组[6,6,1]
堆排序,利用了堆这种数据结构的特性来辅助完成排序工作,时间复杂度为O(nlogn),需要开辟额外空间【其实我们不开辟额外空间也可以,把原始数组空间直接利用当做堆的内存空间来用,之后出堆的时候前面出,后面进】
packagecom.cnblogs.mufasa.demo2_select;importorg.junit.Test;importjava.util.PriorityQueue;public classSolution1_select {private static final int MAX=Integer.MAX_VALUE;//1,普通选择排序,时间复杂度为O(n^2)
public void normal_select1(int[] nums){int len=nums.length,min,loc;for(int i=0;i
min=MAX;
loc=i;for(int j=i;j
min=nums[j];
loc=j;
}
}
nums[loc]=nums[i];
nums[i]=min;
}
}//2,利用最大堆、最小堆特性进行排序【Java容器中的优先队列就是使用的堆元素】
public void normal_select2(int[] nums){int len=nums.length;
PriorityQueue queue=new PriorityQueue<>(len);for(inttemp:nums){
queue.add(temp);
}for(int i=0;i
nums[i]=queue.poll();
}
}//3,数据结构堆的手动实现
public void normal_select3(int[] nums) throwsException {
Heap heap=new Heap(false);for(inttemp:nums){
heap.add(temp);
}for(int i=nums.length-1;i>=0;i--){
nums[i]=heap.poll();
}
}public void printOut(int[] nums){for(inttemp:nums){
System.out.print(temp+",");
}
System.out.println();
}
@Testpublic void test() throwsException {int[] nums={13,14,478,6,41,698,12,5,3};//int[] nums={5,2,9,6,1,0,3,7,8};
printOut(nums);//normal_select1(nums);//normal_select2(nums);
normal_select3(nums);
printOut(nums);
}
}
View Code
数据结构-堆 Heap.java
packagecom.cnblogs.mufasa.demo2_select;public classHeap {private static final int CAPACITY=16;private static final boolean TYPE=true;private static int[] nums;private int capacity=16;int size=0;private boolean type=true;//true由小到大,false由大到小
publicHeap(){this(CAPACITY);
}public Heap(intcapacity){this(capacity,TYPE);
}public Heap(booleantype){this(CAPACITY,type);
}public Heap(int capacity,booleantype){this.capacity=capacity;this.type=type;
nums=new int[capacity];
}//数据添加
public void add(intnum){if(size+1>=capacity){
dilatate();
}
nums[size+1]=num;
reSortUp(size+1);
size++;
}private void reSortUp(intindex){if(type){//由小到大
while (index!=1){if(nums[index/2]>nums[index]){int temp=nums[index];
nums[index]=nums[index/2];
nums[index/2]=temp;
index/=2;
}else if(nums[index/2]==nums[index]){//throw new IllegalArgumentException("数据结构-堆不接受重复数据输入");
break;
}else{return;
}
}
}else {//由大到小
while (index!=1){if(nums[index/2]
nums[index]=nums[index/2];
nums[index/2]=temp;
index/=2;
}else if(nums[index/2]==nums[index]){//throw new IllegalArgumentException("数据结构-堆不接受重复数据输入");
break;
}else{return;
}
}
}
}//数据输出,并且清楚该数据
public int poll() throwsException {if(size>0){int temp=nums[1];
nums[1]=nums[size];
reSortDown();
size--;returntemp;
}else{throw new Exception("数据为空");
}
}private voidreSortDown(){int index=1;intL,R;if(type){//由小到大
while (index
L=index*2;
R=L+1;if(R<=size){boolean flag=nums[L]min){if(flag){int temp=nums[index];
nums[index]=nums[L];
nums[L]=temp;
index=L;
}else{int temp=nums[index];
nums[index]=nums[R];
nums[R]=temp;
index=R;
}
}else{return;
}
}else if(L<=size){if(nums[index]>nums[L]){int temp=nums[index];
nums[index]=nums[L];
nums[L]=temp;
}return;
}else{return;
}
}
}else {//由大到小
while (index
L=index*2;
R=L+1;if(R
nums[index]=nums[R];
nums[R]=temp;
index=R;
}else{int temp=nums[index];
nums[index]=nums[L];
nums[L]=temp;
index=L;
}
}else{return;
}
}else if(L
nums[index]=nums[L];
nums[L]=temp;
}return;
}else{return;
}
}
}
}//数据输出,不清除该数据
public int peek() throwsException {if(size>0){return nums[0];
}else{throw new Exception("数据为空");
}
}//数据扩容,二倍扩容
private voiddilatate(){
capacity=capacity<<1;int[] pre=new int[capacity];for(int i=1;i<=size;i++){
pre[i]=nums[i];
}
nums=pre;
}
}classClient{public static void main(String[] args) throwsException {
Heap heap=new Heap(4,true);//Heap heap=new Heap(4,false);
heap.add(5);
heap.add(3);
heap.add(3);
heap.add(7);
heap.add(1);
heap.add(0);
heap.add(8);
heap.add(8);int len=heap.size;for(int i=0;i
System.out.print(heap.poll()+",");
}
}
}/*0,1,3,5,7,8,
8,7,5,3,1,0,*/
View Code
图-普通选择排序
3,插入排序【简单】
稳定,n^2、希尔有点麻烦,但是理解其本质就很简单了
packagecom.cnblogs.mufasa.demo3_insert;importorg.junit.Test;public classSolution1_insert {//1,普通插入排序,时间复杂度O(n^2)
public void normal_insert1(int[] nums){int len=nums.length;for(int i=1;i
sinInsert(nums,i);
}
}private void sinInsert(int[] nums,intloc){for(int i=loc-1;i>=0;i--){if(nums[i]<=nums[loc]){break;
}else{int temp=nums[i];
nums[i]=nums[loc];
nums[loc]=temp;
loc--;
}
}
}//2,希尔排序,多路进行并发排序,时间复杂度为O(n^1.3)//只要是利用了分治并发的操作,后期可以在Java并发学习中将这个进行知识整合,bingo
public void shell_insert2(int[] nums){int len=nums.length;int step=len/2;while (step!=0){for(int i=0;i
sinShellInsert1(nums,i,len, step);
}
step/=2;
}
}//2.1希尔排序的一级功能
private void sinShellInsert1(int[] nums,int x,int len, intstep){
x+=step;while(x
sinShellInsert2(nums,x,step);
x+=step;
}
}//2.2希尔排序的二级功能
private void sinShellInsert2(int[] nums,int x, intstep){while (x>=step){if(nums[x-step]<=nums[x]){break;
}else{int temp=nums[x];
nums[x]=nums[x-step];
nums[x-step]=temp;
x-=step;
}
}
}public void printOut(int[] nums){for(inttemp:nums){
System.out.print(temp+",");
}
System.out.println();
}
@Testpublic voidtest(){//int[] nums={13,14,478,6,41,698,12,5,3};
int[] nums={5,2,9,6,1,0,3,7,8};
printOut(nums);//normal_insert1(nums);
shell_insert2(nums);
printOut(nums);
}
}
View Code
图-普通插入排序
图-希尔插入排序
4,归并排序【中等难度吧!还是有点难度吧】
第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置
第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
重复步骤3直到某一指针超出序列尾
将另一序列剩下的所有元素直接复制到合并序列尾
packagecom.cnblogs.mufasa.demo4_merge;importorg.junit.Test;public classSolution {static int[] arr;//1,由小往大归并,2-4-8,将小份问题组合成大份问题
public void merge_sort1(int[] nums){int len=nums.length;
arr=new int[len];
sort1(nums,len,1);
}private void sort1(int[] nums,int len,intstep){int L1=0,mid=step-1,R=mid+step;int addNum=2*step;while (mid
merge(nums,L1,mid,R);
}else{
merge(nums,L1,mid,len-1);
}
mid+=addNum;
L1+=addNum;
R+=addNum;
}if(step
sort1(nums,len,step*2);
}
}//2,由大往小归并,8-4-2【本质上还是一样,不过将问题由大拆分成小的】
public void merge_sort2(int[] nums){
arr=new int[nums.length];
sort2(nums,0, nums.length-1);
}//有点类似于二叉树的后续遍历coding
private void sort2(int[] nums,int L,int R){//左闭右开
if (L ==R) {return;
}int mid=(L+R)>>1;
sort2(nums,L,mid);
sort2(nums,mid+1,R);
merge(nums,L,mid,R);
}private void merge(int[] nums,int L,int mid,intR){int i =L;int p1 =L;int p2 = mid + 1;while(p1 <= mid && p2 <=R) {
arr[i++] = nums[p1] < nums[p2] ? nums[p1++] : nums[p2++];
}while(p1 <=mid) {
arr[i++] = nums[p1++];
}while(p2 <=R) {
arr[i++] = nums[p2++];
}for(i = L; i <= R; i++) {
nums[i]=arr[i];
}
}public void printOut(int[] nums){for(inttemp:nums){
System.out.print(temp+",");
}
System.out.println();
}
@Testpublic voidtest(){//int[] nums={13,14,478,6,41,698,12,5,3};
int[] nums={5,2,9,6,1,0,3,7,8};
printOut(nums);
merge_sort1(nums);//merge_sort2(nums);
printOut(nums);
}
}
View Code
图-归并排序
5,分割线小结
上述的冒泡排序、选择排序、插入排序、归并排序都是属于比较类排序,他们大多数不需要开辟额外地址空间,时间复杂度大致范围为O(N^2)~O(nlogn),其中希尔排序的时间复杂度为O(n^1.3)
下面将要给大家介绍的是另外一类排序方法,非比较类排序!!!他们的时间复杂度可以降的很低,但是代价是要开辟额外的内存空间。
6,计数排序【简单】
算法复杂度O(n+k)
本质就是通过各个数值的个数,其中有个键值对——键为这个数值大小,值为其在原始数组中的个数;由键的大小及其个数进行数组还原。
packagecom.cnblogs.mufasa.demo5_count;importorg.junit.Test;importjava.util.HashMap;importjava.util.Map;importjava.util.TreeMap;public classSolution {//1,计数排序,原理很简单,统计个数,还原!!!简单粗暴//这里直接使用TreeMap实现的
public void count_sort1(int[] nums){
TreeMap hm=new TreeMap<>();for(intn:nums){
Object temp=hm.get(n);if(temp==null){
hm.put(n,1);
}else{
hm.put(n,(Integer)temp+1);
}
}int loc=0;for(Map.Entryentry:hm.entrySet()){for(int i=0;i
nums[loc]=entry.getKey();
loc++;
}
}
}//2,直接判断最大的数值是多少来进行数组存储
public void count_sort2(int[] nums){int[] cnts=new int[findMax(nums)+1];for(inttemp:nums){
cnts[temp]++;
}int loc=0;for(int i=0;i
nums[loc]=i;
loc++;
}
}
}private int findMax(int[] nums){int max=Integer.MIN_VALUE;for(inttemp:nums){if(temp>max) max=temp;
}returnmax;
}public void printOut(int[] nums){for(inttemp:nums){
System.out.print(temp+",");
}
System.out.println();
}
@Testpublic voidtest(){//int[] nums={13,14,478,6,41,698,12,5,3};
int[] nums={13,14,478,6,41,698,12,5,3,12,13,400,12};//int[] nums={5,2,9,6,1,0,3,7,8};
printOut(nums);//count_sort1(nums);
count_sort2(nums);
printOut(nums);
}
}
View Code
图-计数排序
7,桶排序【简单】
这个和计数排序有点相似,虽然不是统计个数,但是他把各个位【十位、百位】分桶丢进不同的bucket中?!垃圾分类,不同的垃圾先进行大类划分,之后在进行小类的划分。
packagecom.cnblogs.mufasa.demo6_bucket;importorg.junit.Test;public classSolution {static classLinked{intvalue;
Linked pre;
Linked next;public Linked(intvalue){this.value=value;
}public void insert(Linked node,intvalue){if(value
next=newLinked(node.value);
node.next.pre=node;
node.value=value;
}else{
Linked newNode=newLinked(node.value);
newNode.next=node.next;
node.next.pre=newNode;
node.value=value;
node.next=newNode;
newNode.pre=node;
}
}else{if(node.next==null){
node.next=newLinked(value);
node.next.pre=node;
}else{
insert(node.next,value);
}
}
}
}public void bucket_sort1(int[] nums){
Linked[] linkeds=new Linked[10];for(inttemp:nums){int highN=temp/10;if(linkeds[highN]==null){
linkeds[highN]=newLinked(temp);
}else{
linkeds[highN].insert(linkeds[highN],temp);
}
}int loc=0;for(Linked linked:linkeds){
Linked preNode=linked;while (preNode!=null){
nums[loc]=preNode.value;
loc++;
preNode=preNode.next;
}
}
}public void printOut(int[] nums){for(inttemp:nums){
System.out.print(temp+",");
}
System.out.println();
}
@Testpublic voidtest(){int[] nums={13,14,47,6,41,69,12,5,3};//int[] nums={5,2,9,6,1,0,3,7,8};//int[] nums={5,2,9,6,1,0,3,7,8,};
printOut(nums);
bucket_sort1(nums);//quick_sort2(nums);
printOut(nums);
}
}
View Code
图-桶排序
8,基数排序【简单】
需要使用到队列数据结构!把个位十位....就和垃圾分类一样逐个丢进对应的队列,全部丢进去之后在逐个出队,还原反复多次【取决于最大值的位数】
packagecom.cnblogs.mufasa.demo7_radix;importorg.junit.Test;importjava.util.LinkedList;importjava.util.Queue;public classSolution {static classNode{intvalue;public Node(intvalue){this.value=value;
}
}static class myRadixBucket{
LinkedList [] queues=new LinkedList[10];publicmyRadixBucket(){for(int i=0;i<10;i++){
queues[i]=new LinkedList<>();
}
}public LinkedList[] getInstance(){returnqueues;
}
}public void radix_sort1(int[] nums,intloop){
myRadixBucket mr=newmyRadixBucket();
LinkedList [] queues=mr.getInstance();//需要用到队列
for(int i=0;i
queues[temp/loc1%10].add(newNode(temp));
}int loc=0;for(Queuequeue:queues){int len=queue.size();
Node preNode;for(int j=0;j
preNode=queue.poll();
nums[loc]=preNode.value;
loc++;
}
}
}
}public void printOut(int[] nums){for(inttemp:nums){
System.out.print(temp+",");
}
System.out.println();
}
@Testpublic voidtest(){int[] nums={13,14,678,6,41,498,12,5,3};//int[] nums={5,2,9,6,1,0,3,7,8};
printOut(nums);
radix_sort1(nums,3);//这里的loop与原始数组中最大数值的位长度相等,这里的原始数据最大值为678为百位取值loop=3//quick_sort2(nums);
printOut(nums);
}
}/*41,12,13,3,14,5,6,678,498, 【第一次,基数排序】
3,5,6,12,13,14,41,678,498, 【第二次,基数排序】
3,5,6,12,13,14,41,498,678, 【第三次,基数排序】
注意每一次都是进行了每个位【个位、十位、百位】上的有序整理*/
View Code
图-基数排序
后面附上我之前使用Python写的排序算法汇总:十大经典排序算法(python实现)(原创)