小红书笔记主题分析

本文介绍如何利用Python库sklearn和pandas对小红书笔记进行爬取和分析。通过词向量将文本转化为向量,运用KMeans进行无监督聚类,将每个笔记归类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# -*- coding: UTF-8 -*-
import numpy as np
import argparse
import random
import pickle as pk
import json


def save_json(file, res):
    """
    保存 dict 到本地json 文件 , 自动创建json
    :param file: json 文件名
    :param res: 数据
    :return:
    """
    with open(file, 'w', encoding='utf-8') as wr:
        json.dump(res, wr, ensure_ascii=False, indent=2)


def load_json(file):
    """
    读取本地json文件,得到dict
    :param file: json 文件名
    :return:
    """
    with open(file, 'r', encoding='utf-8') as reader:
        res = json.load(reader)
    return res


def save_cache(file, ob):
    wr = open(file, 'wb')
    pk.dump(ob, wr)
    wr.close()


def load_cache(file):
    re = open(file, 'rb')
    ob = pk.load(re)
    re.close()
    return ob

def read_vectors(path, topn):  # read top n word vectors, i.e. top is 10000
    lines_num, dim = 0, 0
  
内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值