python opencv图像二值化函数_python+opencv边缘提取与各函数参数解析

本文介绍了使用python和opencv进行图像处理的基础知识,包括环境搭建、图像二值化、边缘提取的步骤。通过GaussianBlur进行高斯平滑,然后使用Canny函数进行边缘检测,详细解析了函数参数的意义。提供了完整代码示例,适合机器视觉初学者。
摘要由CSDN通过智能技术生成

前情提要:作为刚入门机器视觉的小伙伴,第一节课学到机器视觉语法时觉得很难理解,

很多人家的经验,我发现都千篇一律,功能函数没解析,参数不讲解,就一个代码,所以在此将搜集的解析和案例拿出来汇总!!!

一、opencv+python环境搭建

其实能写python的就能写opencv,但是工具很总要,代码提示也很重要,你可能会用submit vs等工具,submit编码个人觉得不够智能,vs的话过完年我学的方向不一致,所以没用

推荐 pycharm ,在项目setting中的项目解释器中安装 opencv-python 即可进行编码。python环境搭建也灰常方便。

二、边缘提取案例

import cv2

def edge_demo(image):

#GaussianBlur图像高斯平滑处理

blurred = cv2.GaussianBlur(image, (3, 3), 0)

#(3, 3)表示高斯矩阵的长与宽都是3,意思就是每个像素点按3*3的矩阵在周围取样求平均值,,标准差取0

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

#颜色模式转换成cv2.COLOR_BGR2GRAY模式下的灰度图像

edge_output = cv2.Canny(gray, 50, 150)

#提取上一步中处理好的图像边缘,50和150分别代表低阈值和高阈值,高阈值用来将物体与背景区分开来,低的用于平滑连接高阈值产生的片段,使图像成一个整体

cv2.imshow("canny edge", edge_output)#输出灰度图像

#原

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值