python plot 渐变颜色_创建渐变颜色贴图matplotlib

由于您尝试模拟现有渐变而不是从任意颜色创建渐变,因此只需找到一个与测量的渐变值匹配的公式。在

首先取梯度上每个点的平均像素r,g,b值。你需要先得到一个纯图像,你发布的图像有一个白色的边框,边缘有一些响声;我用了一个图像编辑器来清理它。在

一旦测量到值,就可以使用^{}进行曲线拟合。我胡乱猜测5度就足够了,得到了6个系数的数组。在这里,您可以看到一个测量值的曲线图,并覆盖拟合曲线。我认为这是一个很好的匹配。在

下面是用这些曲线重建梯度的代码。在rp = [-1029.86559098, 2344.5778132 , -1033.38786418, -487.3693808 ,

298.50245209, 167.25393272]

gp = [ 551.32444915, -1098.30287507, 320.71732031, 258.50778539,

193.11772901, 30.32958789]

bp = [ 222.95535971, -1693.48546233, 2455.80348727, -726.44075478,

-69.61151887, 67.591787 ]

def clamp(n):

return min(255, max(0, n))

def gradient(x, rfactors, gfactors, bfactors):

'''

Return the r,g,b values along the predefined gradient for

x in the range [0.0, 1.0].

'''

n = len(rfactors)

r = clamp(int(sum(rfactors[i] * (x**(n-1-i)) for i in range(n))))

g = clamp(int(sum(gfactors[i] * (x**(n-1-i)) for i in range(n))))

b = clamp(int(sum(bfactors[i] * (x**(n-1-i)) for i in range(n))))

return r, g, b

from PIL import Image

im = Image.new('RGB', (742, 30))

ld = im.load()

for x in range(742):

fx = x / (742 - 1)

for y in range(30):

ld[x,y] = gradient(fx, rp, gp, bp)

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页