"一线三等角"是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角.通俗地讲,一条直线上有三个相等的角一般就会存在相似的三角形.不同地区对此有不同的称呼,"K形图","三垂直","弦图"等,以下统称为"一线三等角"模型。
"一线三等角"模型,在三角形全等判定与全等三角形性质、三角形相似判定与相似三角形性质、线段相等、四边形等几何问题中常有应用.我们将从模型介绍与典型例证这两个方面学习"一线三等角"模型。

模型透视

经典考题
1.(2018•遵义中考题)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为______.

【解析】根据折叠的性质得到一线三等角模型。

2.如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是( )

A.1 B.2 C.3 D.不能确定
【解析】如图作辅助线,利用旋转和三角形全等证明△DNE与△DMC全等,再根据全等三角形对应边相等可得ED的长,即△ADE的高,然后得出三角形的面积.


3.(2019•宜昌中考题)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是( )

A.(﹣1,2+√3) B.(﹣√3,3) C.(﹣√3,2+√√3) D.(﹣3,√3)
【解析】如图,作B′N⊥x轴于N, BM⊥x轴于M.构造三垂直模型。

4.(2019•河池中考题)如图,在平面直角坐标系中,A(2,0),B(0,1),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是______.

【解析】:∵A(2,0),B(0,1)∴OA=2,OB=1.过点C作CD⊥x轴于点D,

则易知△ACD≌△BAO(AAS).
∴AD=OB=1,CD=OA=2,∴C(3,2).
设直线AC的解析式为y=kx+b,将点A,点C坐标代入得,可求得直线AC的解析式为y=2x﹣4.
变式题.如图3,在平面直角坐标系xOy中,点A的坐标为(﹣1,﹣4),点B为平面内一点.若△AOB是以OA为斜边的等腰直角三角形,请直接写出点B的坐标.

【解答】分两种情况:
①过A作AC⊥y轴于D,过B作BE⊥x轴于E,DA与EB相交于C,如图3所示:则∠C=90°,
∵点A的坐标为(﹣1,﹣4),
∴AD=1,OD=CE=4,
∵∠OBO=90°,
∴∠OBE+∠ABC=90°,
∵∠ABC+∠BAC=90°,
∴∠BAC=∠OBE,
易证△ABC≌△BOE(AAS),
∴AC=BE,BC=OE,
设OE=x,则BC=OE=CD=x,
∴AC=BE=x+1,
∴CE=BE+BC=x+1+x=OD=4,
∴x=3/2,x+1=5/2,
∴点B的坐标(3/2,5/2);

②如图4,同理可得,点B的坐标(﹣5/2,﹣3/2),
综上所述,点B的坐标为(3/2,5/2)或(﹣5/2,﹣3/2).
5.(2019•十堰中考题)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE=______.

【解析】分析知△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大.

6.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4√5,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为______.

【解析】本题考查了正方形,熟练运用正方形的性质与全等三角形的判定与性质是解题的关键.



7.(2019•沈阳中考题)如图,正方形ABCD的对角线AC上有一点E,且CE=4AE,点F在DC的延长线上,连接EF,过点E作EG⊥EF,交CB的延长线于点G,连接GF并延长,交AC的延长线于点P,若AB=5,CF=2,则线段EP的长是_______.

【解析】本题考查正方形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.

8.(2017•丽水中考题)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).
(1)当直线AB经过点C时,点O到直线AB的距离是_______;
(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是_______.

【解析】:(1)当直线AB经过点C时,点A与点C重合,
当x=2时,y=﹣2+m=0,即m=2,
所以直线AB的解析式为y=﹣x+2,则B(0,2).
∴OB=OA=2,AB=2√2.
设点O到直线AB的距离为d,
由S△OAB=1/2OA2=1/2AB•d,得4=2√2d,则d=√2.
故答案是:√2.
(2)典型的"一线三等角",构造相似三角形△PCD∽△APB,对m的取值分析进行讨论,在m<0时,点A在x轴的负半轴,而此时,∠APC>∠OBA=45°,不合题意;故m>0.由相似比求得边的相应关系.
作OD=OC=2,连接CD.则∠PDC=45°,如图,
由y=﹣x+m可得A(m,0),B(0,m).所以OA=OB,
则∠OBA=∠OAB=45°.
当m<0时,∠APC>∠OBA=45°,
所以,此时∠CPA>45°,故不合题意.所以m>0.
因为∠CPA=∠ABO=45°,
所以∠BPA+∠OPC=∠BAP+∠BPA=135°,
即∠OPC=∠BAP,则△PCD∽△APB,


9.这是一道我们曾经探究过的问题:如图1.等腰直角三角形ABC中,∠ACB=90°,CB=CA.直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.易证得△BEC≌△CDA.(无需证明),我们将这个模型称为"一线三等角"或者叫"K形图".接下来,我们就利用这个模型来解决一些问题:
【模型应用】
(1)直线AB:y=1/2x+1与x轴负半轴、y轴正半轴分别交于A、B两点.分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图2,△EPB的面积是否确定?若确定,请求出具体的值;若不确定,请说明理由.


(2)如图3,直线AB:y=﹣x﹣c分别与x、y轴交于A(3,0)、B两点,P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K,当P点运动时,求经过K点且平行于直线AB的直线的函数表达式.
【拓展延伸】
(3)已知直线l1:y=3/4x+3与坐标轴交于点A、B.将直线l1绕点A逆时针旋转45°至直线l2.如图4,直线l2在x轴上方的图象上是否存在一点Q,使得△QAB的面积与△OAB的面积相等?若存在,求出Q的坐标;不存在,说明理由.
【解析】:(1)直线AB:y=1/2x+1与x轴负半轴、y轴正半轴分别交于A、B两点.∴A(﹣2,0),B(0,1),
过E点作EH⊥y轴,由"K形图"可得△ABO≌△BEH,
∴BH=OA=2,HE=OB=1,
∵△OBF是等腰直角三角形,
∴OB=OF=1,
∴易证△EHP≌△FBP(AAS)
∴PH=PB=1,

(2)由直线AB:y=﹣x﹣c分别与x、y轴交于A(3,0)、B两点,可得c=3,OB=3,过Q点作QH⊥x轴,设点P(x,0),由"K形图",可得△OBP≌△HPQ;

∴OP=HQ=x,PH=OB=3,
∴HA=3+(x﹣3)=x,即HA=HQ
∴OK=3,即K(0,3)
∴过K点且平行于直线AB的直线的函数表达式为y=﹣x﹣3.
(3)过B点作BE⊥AB交l2于C,过C点作CH⊥y轴,

直线l1:y=3/4x+3与坐标轴交于点A(﹣4,0)、B(0,3).
由"K形图",得△AOB≌△BHC,
∴BH=OA=4,CH=OB=3,
∴C的坐标为(﹣3,7)
故过AC两点的直线l2的解析式为:y=7x+28,
设Q点坐标为(﹣n,﹣7n+28),


反思总结
关于"一线三等角"模型的几点说明
"一线三等角"在以正方形、矩形、等腰三角形、等腰梯形为背景的体现很明显,希望可以通过这一题组加以理解,学会灵活运用,解决问题。面对一个个数学问题,若能寻找并建立起它的基本模型,寻找出本质,复杂图形只是在原有简单图形上"添砖加瓦",层层递进。需要我们把握住这个问题的本质所在,深层挖掘题目所涉及基本思想。
1、"一线三等角"是几何问题中的常见模型,它主要用于导角转换、线段转换与构造全等三角形与相似三角形.
2、导角转换主要基于三角形内角和为180度或平角,利用等式性质实现角度转换.学生在平时解题过程中,要善于总结归纳"一线三等角"基本图形,多关注"一线三等角"模型的提炼、变式与运用.
3、"一线三等角"模型应用的三种情况:(1)图形中已经存在"一线三等角",直接应用模型解题;(2)图形中存在"一线二等角",补上"一等角"构造模型解题;(3)图形中只有直线上一个角,补上"二等角"构造模型解题.最后一种情况出现比较多,尤其是压轴题中,经常会有一个特殊角或已知该角的三角函数值时,我经常构造"一线三等角"模型来解题.
4、构造"一线三等角"的步骤:找角、定线、构相似.在直角坐标系中,也可以在x轴或y轴(也可以是平行于x轴或y轴的直线)上构造"一线三等角"模型去求解线段与角度问题.在直角坐标系中,要讲究"线"的特殊性.如下图,线上有一特殊角45度,就考虑构造同侧型"一线三等角".当然只加这两条线通常是不够的,为了利用这个特殊角导线段的关系,过C、D两点作直线l的垂线是必不可少的.两条垂线通常情况下是为了"量化"的需要.如控制AM=CM,BN=DN,可得∠2=∠3=∠1=45°.

一般情况下,如下图,若∠APB=,构造"一线三等角"相似模型如下图所示:
