原理
数据正规化(data normalization)是将数据的每个样本(向量)变换为单位范数的向量,各样本之间是相互独立的.其实际上,是对向量中的每个分量值除以正规化因子.常用的正规化因子有 L1, L2 和 Max.假设,对长度为 n 的向量,其正规化因子 z 的计算公式,如下所示:
注意:Max 与无穷范数
不同,无穷范数
是需要先对向量的所有分量取绝对值,然后取其中的最大值;而 Max 是向量中的最大分量值,不需要取绝对值的操作.
补充:一阶范数也称为曼哈顿距离(Manhanttan distance)或街区距离;二阶范数也称为欧式距离(Euclidean distance).
实现
在 Python 库 sklearn 中,有两种实现方式进行数据的正规化,这两种实现都可通过参数 norm 选择正规化因子,可选项有 ‘l1‘, ‘l2‘ 和 ‘max‘.
方法一:采用 sklearn.preprocessing.Normalizer 类,其示例代码如下:
#!/usr/bin/env python#-*- coding: utf8 -*-#author: klchang
# Use sklearn.preprocessing.Normalizer class to normalize data.
from __fu