fick第二定律matlab求解,(最新整理)实验二MATLAB数值计算常微分方程(组)的求解

这篇博客详细介绍了如何使用MATLAB进行常微分方程(组)的数值计算,包括解析解与数值解的方法。通过范德堡方程的实例展示了ode45和ode15s求解器的应用,同时讲解了相图的绘制和事件判断功能,以解决地球卫星轨道仿真问题。内容涵盖了从理论到实践的完整过程。
摘要由CSDN通过智能技术生成

《(最新整理)实验二MATLAB数值计算常微分方程(组)的求解》由会员分享,可在线阅读,更多相关《(最新整理)实验二MATLAB数值计算常微分方程(组)的求解(19页珍藏版)》请在人人文库网上搜索。

1、完整)实验二 MATLAB数值计算 常微分方程(组)的求解(完整)实验二 MATLAB数值计算 常微分方程(组)的求解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)实验二 MATLAB数值计算 常微分方程(组)的求解)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为(完整)实验二 MATLAB数值计算 常微分方程(。

2、组)的求解的全部内容。实验二 MATLAB数值计算:常微分方程(组)的求解一、实验目的在物理学和工程技术上,很多问题都可以用一个或一组常微分方程来描述,因此要解决相应的实际问题往往需要首先求解对应的微分方程。在大多数情况下这些微分方程通常是非线性的或者是超越方程(比如范德堡方程,波导本征值方程等),因此往往需要使用计算机数值求解。MATLAB作为一种强大的科学计算语言,其在数值计算和数据的可视化方面具有无以伦比的优势。在解决常微分方程问题上,MATLAB就提供了多种可适用于不同场合(如刚性和非刚性问题)下的求解器(Solver),例如ode45,ode15s,ode23,ode23s等等.本次。

3、实验将以范德堡方程的计算和地球卫星的运行轨道的仿真为例,练习使用MATLAB的常微分方程求解器,以期达到如下几个目的:1. 熟悉常微分方程的求解方法,了解状态方程的概念;2. 能熟练使用dsolve函数解析求解常微分方程;3. 能熟练运用ode45、ode15s求解器分别数值求解非刚性和刚性常微分方程;4. 学习用求解器来绘制相图的方法。二、实验的预备知识1微分方程的概念未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程.如果未知函数是一元函数,称为常微分方程(Ordinary differential equations,简称odes)。n阶常微分方程的一般形。

4、式(隐式)为:(1)其中t为自变量。如果未知函数是多元函数,成为偏微分方程。联系一些未知函数的一组微分方程组称为微分方程组。微分方程中出现的未知函数的导数的最高阶解数称为微分方程的阶。若方程中未知函数及其各阶导数都是一次的,称为线性常微分方程,一般表示为若上式中的系数ai (t), i=1,2,,n均与t无关,称之为常系数。2常微分方程的解析解有些微分方程可直接通过积分求解,例如一阶常系数常微分方程。有些常微分方程可用一些技巧,如分离变量法,积分因子法,常数变异法,降阶法等可化为可积分的方程而求得解析解。线性常微分方程的解满足叠加原理,从而他们的求解可归结为求一个特解和相应齐次微分方程的通解。。

5、一阶变系数线性微分方程总可用这一思路求得显式解.高阶线性常系数微分方程可用特征根法求得相应齐次微分方程的基本解,再用常数变异法求特解。一阶常微分方程与高阶微分方程可以互化,已知一个n阶常微分方程(显式):(2)设,可将上式化为n元一阶常微分方程组:(3)注意y1即是要求的未知函数,式(1)、(2)、(3)等价.反过来,在许多情况下,一阶微分方程组也可化为高阶方程.所以一阶微分方程组与高阶常微分方程的理论与方法在许多方面是相通的,一阶常系数线性微分方程组也可用特征根法求解。【(3)式也称状态方程,y1, y2, ,yn称为状态变量,解变量为y 】3微分方程的数值解法除常系数线性微分方程可用特征根。

6、法求解,少数特殊方程可用初等积分法求解外,大部分微分方程主要依靠数值解法.考虑n阶微分方程(2)式的数值求解,它等价于一阶常微分方程组(3)式.将(3)式写成通式:Matlab各种有关的求解器(Solver)都是基于(4)式求解。其中为n个分量的列向量(Column vector),也即状态变量;n个分量的列向量,每个元素代表常微分方程组中右边的函数表式 方程(4)式要有确定的解必须给定初值条件(t0为初始时刻):(7)所谓数值解法,就是在求解区间t0 ,tf上寻求y(t)在一系列离散节点上的近似值。称为步长,通常取为常量h。最简单的数值解法是Euler方法.Euler法的思路极其简单:在节点。

7、处用差商近似代替(4)式中的导数利用(4)式导出计算公式(称为Euler格式)(8)即(9)因此,只要给出初始条件(7),由(8)或(9)式反复迭代,可解出各个时刻tk(k=0,1,m)微分方程的近似解y(tk)。Euler方法只有一阶精度,改进方法有二阶Runge-Kutta法、四阶RungeKutta法、五阶Runge-KuttaFelhberg法和先

MATLAB求解一维 Fick 扩散方程可以通过数值解法实现。首先需要定义方程的初始条件、边界条件和相关参数,然后利用数值模拟方法求解方程。下面是具体的步骤: 1.定义初始条件和边界条件。例如,假设我们要求解的是在一个 $L$ 长度的区域中,初始时物质浓度分布为 $c(x,0)$,左端点 $x=0$ 处物质浓度为 $c_0$,右端点 $x=L$ 处物质浓度为 $c_L$,则可以定义初始条件和边界条件为: $$ c(x,0) = c(x), \quad c(0,t) = c_0, \quad c(L,t) = c_L $$ 2.确定数值解法。根据 Fick 扩散方程的特点,可以选择离散化方法求解。其中最常用的方法是差分法和有限元法。在此简单介绍差分法。离散化后的方程可以表示为: $$ \frac{c_i^{n+1}-c_i^n}{\Delta t} = D\frac{c_{i+1}^n-2c_i^n+c_{i-1}^n}{\Delta x^2} $$ 其中,$c_i^n$ 表示在时间 $n$,位置 $x_i$ 处的物质浓度,$D$ 表示扩散系数,$\Delta x$ 和 $\Delta t$ 分别表示空间步长和时间步长。 3.编写 MATLAB 程序。根据上述方程,可以采用迭代方法求解。步骤包括初始化各个变量,确定时间和空间步长,然后进行迭代。具体的 MATLAB 代码如下: ```matlab % 定义常量和初始条件 D = 1.0; % 扩散系数 c0 = 1.0; % 左端点浓度 cL = 0.0; % 右端点浓度 T = 1.0; % 总时间 L = 1.0; % 区域长度 nx = 101; % 离散化的点数 dx = L/(nx-1); % 空间步长 dt = 0.0001; % 时间步长 nt = ceil(T/dt); % 时间步数 % 初始化网格和初始条件 x = linspace(0,L,nx); c = ones(1,nx)*c0; c(nx) = cL; % 迭代求解 for n = 1:nt c_new = c; for i = 2:nx-1 c_new(i) = c(i) + D*dt/dx^2*(c(i+1)-2*c(i)+c(i-1)); end c = c_new; end % 可视化结果 plot(x,c); xlabel('位置','fontsize',14); ylabel('浓度','fontsize',14); title(['Fick扩散方程的数值解,时间:',num2str(T)],'fontsize',14); ``` 4.运行程序并查看结果。运行程序后,可以看到在 $T=1$ 时刻的物质浓度分布图像。 总之,通过上述步骤可以用 MATLAB 求解一维 Fick 扩散方程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值