【考试要求】
1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;
2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;
3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
【知识梳理】
1.直线的倾斜角
(1)定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角;
(2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为0;
(3)范围:直线的倾斜角α的取值范围是[0,π).
2.直线的斜率
(1)定义:当直线l的倾斜角α≠时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k表示,即k=tanα;
(2)斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=.
3.直线方程的五种形式


【微点提醒】
1.直线的斜率k和倾斜角α之间的函数关系:
2.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.
3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.



【考点聚焦】
考点一 直线的倾斜角与斜率


【规律方法】 1.由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围求直线倾斜角的取值范围时,常借助正切函数y=tan x在[0,π)上的单调性求解,这里特别要注意,正切函数在[0,π)上并不是单调的.
2.过一定点作直线与已知线段相交,求直线斜率范围时,应注意倾斜角为时,直线斜率不存在.

考点二 直线方程的求法

【规律方法】
1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.
2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).

考点三 直线方程的综合应用
角度1 与不等式相结合的最值问题

角度2 由直线方程求参数范围

【规律方法】 与直线方程有关问题的常见类型及解题策略
(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.
(2)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.









