在已知概率分布
P
(
n
)
,
n
=
0
,
1
,
…
,
∞
\text{P}(n),n=0,1,\dots,\infty
P(n),n=0,1,…,∞ 的情况下,均值的计算公式为:
m
=
∑
n
=
0
∞
n
⋅
P
(
n
)
=
m
m=\sum^{\infty}_{n=0}n\cdot \text{P}(n)=m
m=n=0∑∞n⋅P(n)=m
方差的计算公式:
Var
=
∑
n
=
0
∞
n
2
P
(
n
)
−
m
2
\text{Var} = \sum^{\infty}_{n=0}n^2\text{P}(n)-m^2
Var=n=0∑∞n2P(n)−m2
二阶矩的计算公式:
SM
=
⟨
X
2
⟩
=
∑
n
=
0
∞
n
2
⋅
P
(
n
)
\text{SM}=\langle X^2\rangle=\sum_{n=0}^{\infty}n^2\cdot \text{P}(n)
SM=⟨X2⟩=n=0∑∞n2⋅P(n)