今天不讲技巧,讲讲每位Excel使用者都无法回避的问题。Excel2016内置的图表有14大类:柱形图、折线图、饼图、条形图、面积图、XY(散点图)、股价图、曲面图、雷达图、树状图、旭日图、组合图等,每种图表类型下还包含不同的子图表类型。不同类型的图表表现数据的意义和作用是不相同的,如下面几种图表类型,它们展示的是同样的数据,但表达出的含义却截然不同。
下图主要展示了数据的趋势和各过程。
下图主要展示了各数据之间的大小和差异。
下面看不到趋势、大小,只能看到各组数据的占比。
那到底什么时候该用什么类型的图呢?如何通过图表的类型清楚展示想要表达的内容?
1.柱形图
柱形图是最常见的图表类型,它的适用场合是二维数据集,即每个数据点包含X、Y两个方向值,但只有一个维度需要比较的情况。下面就是个由“年份”和“销售额”组成的二维数据,但我们只需要比较“销售额”这一个维度。柱形图通常沿水平轴组织类别,而沿垂直轴组织数值,利用柱子的高度反映数值的差异。由于肉眼对高度差异很敏感,柱形图辨识效果非常好,也容易解读,但柱形图的局限在于只适用于中小规模数据集。
2.条形图
条形图可以看作是柱形图逆时针旋转90°后形成的图表,主要用于显示各项目之间的数据差异,不同的是,柱形图是在水平方向依次展现数据,条形图是在垂直方向依次展示数据。条形图的分类项在垂直方向表示,数值在水平方向表示。这样的方式可以突出数值的比较,而淡化时间的变化。条形图可以应用于轴标签过长的图表绘制,以免出现柱形图中对长分类标签省略的情况。还有一点,与柱形图相比,条形图更适合于展现排名。
3.折线图
折线图是将同一数据系列的数据点在图上用直线连接起来,用来显示数据的变化趋势。与柱形图比,当数据很多时,折线图更适合二维的大数据集,由于折线图更容易分析数据的变化趋势,对于那些趋势比单个数据点更重要的情景,折线图是首选。
4.XY(散点图)
XY(散点图)主要用于显示单个或多个数据系列中各数值之间的相互关系,或者将两组数字绘制为XY坐标的一个系列。即两组数字中的一组数字表示为X轴上对应的值,另一组数字表示为Y轴上对应的值,这样一个散点就有了X值和Y值。也就是说能在散点图中有两个数值坐标轴,沿横坐标(X轴)方向显示一组数值数据,沿纵坐标(Y轴)方向显示另一组数值数据。一般情况,散点图用这些数值构成多个坐标点,通过观察坐标点的分布,即可判断变量间的关系,同时还可以设置趋势线。
5.面积图
面积图与折线图类似,可以显示多组数据系列,只是将连线与分类轴之间用图案填充,主要用于表现数据的趋势。不同的是,折线图只能单纯的反映每个样本的变化趋势,而面积图还可以通过面积反映总体数据的变化趋势。根据微积分概念,通常面积反映总值大小,因此面积图常用于引起人们对总值趋势关注的情况。通过显示所绘制值的总和,面积图还可以显示部分与整体的关系。
6.饼图
当需要反映某个部分占整体比重多少时,就可以使用饼图。饼图会先将某个数据系列中单独的数据转换为数据系列总和的百分比,然后按照百分比将数据绘制在一个圆形上,数据点之间用不同的图案填充,缺点是只能显示一个系列。一般在仅有一个要绘制的数据系列,即仅排列在工作表的一列或一行中的数据,且要绘制的数值中不包含负值的情况下,才使用饼图图表。由于各类别分别代表整个饼图的一部分,因此饼图中最好不要超过7个类别,否则就会显得杂乱,也不好识别其大小。
饼图包含了圆环图,它类似于饼图,是使用环形的一部分来表现一个数据在整体数据中的大小比例。圆环图也可以含有多个数据系列。圆环图和饼图结合也可以制作双层饼图。感兴趣的可以看下这篇文章《新来的同事,工资竟在我之上?看到他做的Excel图表后,我心服口服》
7.雷达图
雷达图又称蜘蛛网图。它用于显示独立数据系列之间以及某个特定系列与其他系列的整体关系。每个分类都拥有自己的数值坐标轴,这些坐标轴同心点向外辐射,并由折线将同系列中值连接起来。雷达图适用于多维数据(四维以上)且每个维度必须可以排序。
除此之外,Excel还提供了气泡图、股价图、曲面图、树状图、旭日图、直方图、箱型图、瀑布图、组合图表。由于这些图相对用得较少,下面我们只简单介绍下。
● 气泡图:散点图的变形,能够反映三个变量关系,气泡的面积大小也能反映一个维度的数值大小。
● 股价图:主要描绘股票价格走势,也用于描绘其它科学数据,如每天气温变化。
● 曲面图:显示的是连接一组数据点的三维曲面。曲面图好像一张地质学地图,曲面图中的颜色不用于区别数据系列,而是用来区别值。
● 树状图:矩形式树状结构图,可实现层次结构可视化的图表结构,方便用户轻松发现不同系列之间、不同数据之间大小关系。
● 旭日图:功能与旧版的复合环形图类似,即将几个环形图套在一起。
● 对于直方图、箱型图、瀑布图一般在专业领域或特殊场合使用。
下面是整理的图表选择方法,方便大家学习。
对于图形的设计,能达到目的即可,避免过度设计。建议去掉如下元素:
● 不必要的3D效果
● 装饰性的不必要的图片
● 没有意义的颜色变化
● 不必要的背景填充
● 不必要的网格线
● 多余的阴影
同时,尽可能的弱化如下元素:
● 无助于比较、识别数据的坐标轴刻度、线型
● 无助于数据范围识别的网格线
● 填充颜色的数量
● 非核心的数据标签
● 非核心的数据系列
OK,关于如何选择图表就到此结束了,聪明的你有什么别的想法,欢迎留言。