Yancy的博客

CV/ML方向小白研究生,iOS菜鸟工程师。博客评论会实时收到,平时忙,空时尽量回复。...

iOS:NSUserDefaults开发者文档解读、用法注意和代码实例

目录 开发者文档解读 使用注意事项 使用示例 附:iOS开发者文档英文原文 已经有许久未更新博文了,最近主要回到iOS应用开发的横向项目上,所以在视觉、算法等其他领域暂时还木有空更新。 开发者文档解读 NSUserDefaults是一个分层持久进程间(可选分布式)键值存储,是针对存储...

2019-02-22 10:17:39

阅读数 111

评论数 0

PIL:python图像处理类库的使用

PIL(Python Imaging Library Python,图像处理类库)提供了通用的图像处理功能, 以及大量有用的基本图像操作,比如图像缩放、裁剪、旋转、颜色转换等。PIL 是免费的,可以从 http://www.pythonware.com/products/pil/ 下载。 利用 ...

2019-01-07 09:59:01

阅读数 54

评论数 0

超参数及其优化办法:验证集

一、超参数定义: 超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据。和一般的参数比如权重、偏置之类的有差别。 通常情况下,需要对超参数进行优化,给学习机选择一组最优超参数,以提高学习的性能和效果。 有时一个选项被设为学习算法不用学习的超参数,是因为它太难优化了。更多的情况...

2019-01-07 09:37:26

阅读数 103

评论数 0

深度学习:正则化概念浅析

【本文适合初次接触正则化,想了解正则化是什么玩意儿的读者】 【更深层次的正则化知识,我将之后在《深度学习精髓与细节知识合集》专栏中继续补充。】 我们在《深度学习精髓与细节知识合集》专栏中的博文《机器学习:模型的容量》中简化地讨论了修改学习算法的方法:通过增加或减少学习算法可选假设空间的函数来增...

2019-01-06 23:42:27

阅读数 40

评论数 0

机器学习:模型的容量

【简明扼要地归纳了机器学习模型的容量的含义与影响,全文共2267字,阅读约15分钟】 本文我们来简明扼要地探讨机器学习中模型的容量(capacity)。我会收录于我的专栏《深度学习精髓与细节知识合集》中,由于平时比较忙,此专栏也将陆续(缓慢)地记录研究或实践中一点一滴的灵感。 通俗地讲,模型的...

2019-01-06 21:53:52

阅读数 128

评论数 2

TCP/IP、Socket、服务器、UDP

目录 TCP/IP Socket 服务器 UDP 今天重新翻到相关的东西,遂翻阅了冯冬芹老师的《工业自动化网络》一书(我本科时上的课程之一)和廖雪峰老师网站教程,综合整理了一下,记在这里方便后续查阅。 TCP/IP 虽然大家现在对互联网很熟悉,但是计算机网络的出现比互联网要早很多。 ...

2019-01-04 23:51:57

阅读数 21

评论数 0

python中_、__、__xx__(单下划线、双下划线等)的含义

默认情况下,Python中的成员函数和成员变量都是公开的(相当于java中的public,或者OC中定义在.h文件中的公开成员变量)。在python中没有public,private等关键词来修饰成员函数和成员变量。为了区分,用下划线来体现。   (1)_xxx       &quot...

2019-01-03 13:33:56

阅读数 40

评论数 0

字符编码详解:ASCII、Unicode、UTF-8

因为计算机只能处理数字,如果要处理文本,就必须先把文本转换为数字才能处理。最早的计算机在设计时采用8个比特(bit)作为一个字节(byte),所以,一个字节能表示的最大的整数就是255(二进制11111111=十进制255),如果要表示更大的整数,就必须用更多的字节。比如两个字节可以表示的最大整数...

2018-12-28 14:25:24

阅读数 28

评论数 0

数值问题简述:数值溢出、病态条件

一、上溢和下溢 一种毁灭性的舍入误差是 下溢(underflow)。当接近零的数被四舍五入为零时发生下溢。许多函数在其参数为零而不是一个很小的正数时才会表现出质的不 同。例如,我们通常要避免被零除(一些软件环境将在这种情况下抛出异常,有些会返回一个非数字 (not-a-number, NaN) ...

2018-12-09 21:27:19

阅读数 100

评论数 0

结构化概率模型

机器学习的算法经常会涉及到在非常多的随机变量上的概率分布。通常,这些概率分布涉及到的直接相互作用都是介于非常少的变量之间的。使用单个函数来描述整个联合概率分布是非常低效的 (无论是计算上还是统计上)。 我们可以把概率分布分解成许多因子的乘积形式,而不是使用单一的函数来表示概率分布。例如,假设我们...

2018-12-09 21:00:41

阅读数 37

评论数 0

信息论概述

信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进行量化。它最初被发明是用来研究在一个含有噪声的信道上用离散的字母表来发送消息,例如通过无线电传输来通信。在这种情况下,信息论告诉我们如何对消息设计最优编码以及计算消息的期望长度,这些消息是使用多种不同编码机制、从特定的概率分布上采样...

2018-12-09 12:03:51

阅读数 71

评论数 0

概率论基础知识整理:概率分布、边缘/条件概率、期望、协方差

一、概率分布 离散型变量的概率分布可以用 概率质量函数(probability mass function, PMF) 来描述。我们通常用大写字母 P 来表示概率质量函数。通常每一个随机变量都会有 一个不同的概率质量函数,并且读者必须根据随机变量来推断所使用的 PMF,而不 是根据函数的名称来推...

2018-12-06 22:25:52

阅读数 234

评论数 0

主成分分析(PCA)的线性代数推导过程

【摘自Ian Goodfellow 《DEEP LEANRNING》一书。觉得写得挺清楚,保存下来学习参考使用。】 主成分分析(principal components analysis, PCA)是一个简单的机器学习算法,可以通过基础的线性代数知识推导。 假设在n维的R空间中我们有 m 个点...

2018-12-06 21:53:54

阅读数 106

评论数 0

矩阵的迹(Tr)

迹运算返回的是矩阵对角元素的和: 若不使用求和符号,有些矩阵运算很难描述,而通过矩 阵乘法和迹运算符号可以清楚地表示。例如,迹运算提供了另一种描述矩阵Frobenius范数的方式: 用迹运算表示表达式,我们可以使用很多有用的等式巧妙地处理表达式。例如迹运算在转置运算下是不变的: ...

2018-12-06 21:45:45

阅读数 174

评论数 0

矩阵的特征分解和奇异值(SVD)分解——求法和意义

目录 一、特征分解(特征值、特征向量) 二、正定、半正定、负定 三、奇异值(SVD)分解 一、特征分解(特征值、特征向量) 许多数学对象可以通过将它们分解成多个组成部分或者找到它们的一些属性以便更好地理解,这些属性是通用的,而不是由我们选择表示它们的方式产生的。 例如,整数可以分解为质...

2018-12-06 21:35:27

阅读数 143

评论数 0

常见范数(向量范数、矩阵范数)及其在机器学习算法的应用

注意,范数有很多种,它是根据性质来定义的。满足下面三条性质的都可以称为范数: 那么,范数用来干嘛的?上面三个性质,非常像中学向量的模长的定义。二维、三维向量模长也符合上面3个条件,所以也可以叫做范数。所以,其实引入“范数”就是为了得到一种线性空间中的向量“大小”的度量、或两个向量之间的“接近...

2018-12-06 20:31:05

阅读数 133

评论数 0

不平衡类问题(稀有类检测)的评估与改善方法

目录 一、可选度量 二、ROC曲线 三、代价敏感学习 四、基于抽样的方法 不平衡类问题常常出现,特别是异常检测领域。某一类样本很多,某一类样本很少。我们针对这类问题设计了一些评估或改善的方法,使得结果更加令人满意。 本文讲的是一般性的机器学习、数据处理领域的不平衡类问题。在深度学习中如...

2018-11-28 11:01:31

阅读数 79

评论数 0

机器学习/数据处理领域结果的评估度量——召回率、精度、F1score等指标计算方法

我们常常在一些论文后看到作者给出的一些评估度量,不仅仅是简单的正确率,还有Fscore、recall等看似高深的东西。那么这些东西是怎么来、怎么用的呢? 我们要从不平衡类问题讲起。因为在正、负样本不均衡的类中,如果单一使用准确率可能是很不合理的。比如有10个异常类(一般标为正类),90个正常类(...

2018-11-28 10:24:32

阅读数 83

评论数 2

2018异常检测综述——基于统计学、邻近度、密度、聚类的异常检测方法

目录 一、基础知识 异常成因 异常检测方法 异常检测的关键问题 二、基于统计学的方法 三、基于邻近度的方法 四、基于密度的方法 五、基于聚类的方法 异常检测(Anomaly Detection)也称偏差(deviation)检测或者离群点(outlier)检测,从数据的角度来看,...

2018-11-27 22:21:14

阅读数 410

评论数 0

模型过拟合及模型泛化误差评估

今天我们来深入探讨过拟合的一些高阶知识。 对于分类模型,我们总希望它是有低的训练误差和低的泛化误差。那么过拟合的产生机理中有哪些有意思的东西?在建立一个分类模型的过程中我们暂时对检验数据集一无所知(也就是暂时得不到真正泛化误差),那么此时我们是如何估计泛化误差的? 我们的目录: 目录 一、...

2018-11-26 11:14:22

阅读数 185

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭