点到直线的距离公式是高中常见的解析几何公式,形式很优美,但很多人不清楚它的由来,本篇主要来推导一下这个公式,并推广到点到面的距离公式。
- 基础知识
向量(vector):方向(direction)+大小(magnitude)
向量点积(dot product):
于是
另
。
注:点乘为两个向量对应乘积之和.
向量
在向量
上的投影AD:
- 点到直线的距离公式
任意一条直线l:ax+by+c=0,点
,求点A到直线l的距离。
(Find the distance between a point A and a line l)
在直线l上任取一点
,则
,如下图所示。
点A到直线l的距离,等于AC的长度,也等于向量
在向量
上的投影,也就是在法向量 (normal vector) 上的投影。
而直线的方向向量(direction vector)为
, 法向量(normal vector)为
,则根据基础知识中的介绍,
又因为,
,
所以点A到直线l的距离公式为:
- 点到面的距离公式
点A到平面
的距离。
(Find the distance between a point A and a plane
)
与点到直线的距离做法类似,先在平面
上找一点
,
以及平面
的法向量
。其中,平面的法向量为
。
于是点A到平面
的距离就是向量
在向量
上的投影,也就是在法向量 (normal vector) 上的投影。
- 推广:n维空间中点A到n维超平面的距离
点
,超平面
,
则点A到超平面
的距离为:
欢迎交流指正~~
如果想看更多有趣的数学知识,可参阅
双木止月Tong:【国际数学课程】目录zhuanlan.zhihu.com