n维椭球体积公式_【“数”你好看】点到直线与面的距离公式

f589a952ad96d6c70a1822558fd3c4d3.png

点到直线的距离公式是高中常见的解析几何公式,形式很优美,但很多人不清楚它的由来,本篇主要来推导一下这个公式,并推广到点到面的距离公式

  • 基础知识

向量(vector):方向(direction)+大小(magnitude)

向量点积(dot product):

240363e309ff14d6df6573620b7a4253.png
图:向量AB,AC示意图


于是


注:
点乘为两个向量对应乘积之和.

向量

在向量
上的投影AD:

17f4d060c50ca1ff6dac8db8735c252f.png
图:投影示意图

所以,向量
在向量
的投影长度,等于向量
点乘向量
的单位向量(要加绝对值)。
  • 点到直线的距离公式

任意一条直线l:ax+by+c=0,点

,求点A到直线l的距离。

(Find the distance between a point A and a line l)

e8a290c95e4866dcd95d22e6fd7cbcf1.png
图:直线l与点A示意图

在直线l上任取一点

,则
,如下图所示。

2535799b2919bdf76a7dad2126e14c1f.png
图:点B

点A到直线l的距离,等于AC的长度,也等于向量

在向量
上的投影,也就是在法向量 (normal vector) 上的投影。

而直线的方向向量(direction vector)为

, 法向量(normal vector)为
,则根据基础知识中的介绍,

又因为,

所以点A到直线l的距离公式为:

  • 点到面的距离公式

点A到平面

的距离。

(Find the distance between a point A and a plane

)

851b31e46b2b10011ea928860f2806ee.png
图:点A与平面

与点到直线的距离做法类似,先在平面

上找一点
,
以及平面
的法向量
。其中,平面的法向量为

0e82f2241096ff79bb01ec691cd84d36.png
图:点B与法向量n

于是点A到平面

的距离就是向量
在向量
上的投影,也就是在法向量 (normal vector) 上的投影。

  • 推广:n维空间中点A到n维超平面的距离

,超平面

则点A到超平面

的距离为:

欢迎交流指正~~

如果想看更多有趣的数学知识,可参阅

双木止月Tong:【国际数学课程】目录​zhuanlan.zhihu.com
222cc8df0d6e7309b0836321831a4416.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值