
点到直线的距离公式是高中常见的解析几何公式,形式很优美,但很多人不清楚它的由来,本篇主要来推导一下这个公式,并推广到点到面的距离公式。
- 基础知识
向量(vector):方向(direction)+大小(magnitude)
向量点积(dot product):

于是
另
注:点乘为两个向量对应乘积之和.
向量

- 点到直线的距离公式
任意一条直线l:ax+by+c=0,点
(Find the distance between a point A and a line l)

在直线l上任取一点

点A到直线l的距离,等于AC的长度,也等于向量
而直线的方向向量(direction vector)为
所以点A到直线l的距离公式为:
- 点到面的距离公式
点A到平面
(Find the distance between a point A and a plane

与点到直线的距离做法类似,先在平面

于是点A到平面
- 推广:n维空间中点A到n维超平面的距离
点
则点A到超平面
欢迎交流指正~~
如果想看更多有趣的数学知识,可参阅
双木止月Tong:【国际数学课程】目录zhuanlan.zhihu.com