基于python的数据挖掘实验报告_数据挖掘实验报告

该实验报告聚焦于使用Python进行数据挖掘,通过SPSS Clementine软件分析超市购物篮数据,揭示商品间的关联规则及客户群特征。目标是理解和应用GRI与C5.0算法,展示数据挖掘在决策支持中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

市场购物篮分析

经济管理学院

企业管理专业

1306122427

杨欢欢

一、

实验背景

随着社会进入信息化时代,

现代化的企业搜集了大量数据或高维数据,

包括

市场、客户、供货商、竞争对手以及未来趋势等重要信息,但是信息超载与无结

构化,

使得企业决策部门无法有效利用现存的信息,

甚至使决策行为产生混乱与

误用。

通过数据挖掘技术,可以从大量的数据中,

挖掘出不同的信息与知识来支

持决策,必能产生企业的竞争优势。

数据挖掘和知识发现是一个涉及多学科的研究领域。

数据库技术、

人工智能、

机器学习、统计学、粗糙集、模糊集、神经网络、模式识别、知识库系统、高性

能计算、

数据可视化等均与数据挖掘相关。

近年来,

与数据库的知识发现研究领

域已经成为热点,

其中关联规则数据挖掘算法是数据挖掘中的一个很重要的课题,

它是从背后发现数据中的关联或联系。

本实验主要处理描述超级市场购物篮内容(所购买的全部商品的集合)的虚

构数据,

以及购买者的相关个人数据。

目的是寻找购买相似产品并且购买相似产

品的客户群特征。

二、

实验目的

1

掌握数据挖掘的基础知识,能够深刻理解并熟练运用

GRI

C5.0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值