imdb数据集_数据分析项目之互联网电影分析

73e4c30cf949c4669bfa448843403de7.png

项目描述:用Python包pandas、matplotlib等对互联网电影数据进行分析和可视化。

数据源:https://pan.baidu.com/s/1JI9MzYUUfDLHp2W4Bb4nEg 提取码:05mf

相关字段说明:

director_name:导演

actor_1_name:主演

imdb_score:imdb评分

movie_title:电影名称

title_year:年份

genre:类型

gross:票房

项目任务:

1、查看票房的统计信息

2、imdb评分统计

3、电影产量趋势

4、电影类型分析(个数、票房统计等)

具体实现:

1、加载数据

import 

2、查看数据

def 

3、处理缺失数据

def 

4、完成各项目任务

4.1 分析票房统计信息

def 

4.2 imdb评分统计

# 查看各imdb评分的电影个数
    

df6ebf4aba490ebb74c6a096626cae07.png
# 查看top20导演的平均imdb评分
    

509eb7bc697481d593409b672dd3a45a.png

4.3 电影产量趋势

df_movie_years 

876e90b7d15a0ae7d6af9492e2a4feec.png

4.4 电影类型分析

重新构造数据集

def 

电影类型数量统计

    # 电影类型个数统计
    df_genres = get_genres_data(df_data)
    genres_count = df_genres.groupby('genre').size()
    plt.figure(figsize=(15.0, 10.0))
    genres_count.plot(kind='barh')
    plt.title('电影类型数量统计', fontsize=20)
    plt.xlabel('数量', fontsize=18)
    plt.ylabel('类型', fontsize=18)
    plt.savefig('./output/genres_count.png')
    plt.show()

2a71f9dec3c7b94f9a0caa05e9ea7cec.png

电影类型票房统计

# 电影类型票房统计
    

35e41b700726ea0e238563aa36c98115.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值