分数阶simulink工具箱_分数阶微积分和分数阶微分方程数值实验(7)——分数阶微积分的定义与Cauchy积分公式...

本文介绍了分数阶微积分的历史,从莱布尼茨和牛顿的工作开始,到Lacroix的证明,再到Riemann-Liouville和Grünwald-Letnikov定义。文章探讨了Caputo定义在非零初值问题中的重要性,并概述了分数阶微积分在控制系统、汽车悬挂控制等领域的应用。同时,阐述了统一的分数阶微积分算子及其Cauchy积分公式,并给出了一些基本函数的分数阶微分与积分公式。
摘要由CSDN通过智能技术生成

参考文献

薛定宇《分数阶微积分学与分数阶控制》

数值实现

Matlab 2019a 主要基于薛定宇开发的FOTF工具箱

蜜酒厅通讯社 固体地球物理学部

封面及文中照片感谢 @CycleUser 友情提供

前情回顾

形式主义的居士:【重点】分数阶微积分和分数阶微分方程数值实验(6)——Mittag-Leffler函数​zhuanlan.zhihu.com
807bb1a53f154fea44ab8083a0f60c6b.png

分数阶微积分学的简要历史回顾

  • 牛顿与莱布尼茨使用不同的符号来表示不同阶次的导数。
  • 法国数学家L'Hopital写信询问莱布尼茨,如果导数记号中出现分数会有什么含义。莱布尼茨回信说这是悖论,但日后会得出有用的结果。这被认为是分数阶微积分学的开端。
  • 1819年,法国数学家Lacroix证明了
    阶导数为
  • 牛顿发明的导数符号不适合拓展到分数阶微积分学的领域,莱布尼茨发明的导数符号可以直接用于分数阶微积分学。
  • 法国
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值