python中mean的用法_Python numpy.mean() 使用实例

本文通过多个示例详细介绍了Python中numpy库的mean()函数用法,包括计算矩阵平均值、频谱分析、分类精度计算、图像处理等多个场景的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Example 1

def _cascade_evaluation(self, X_test, y_test):

""" Evaluate the accuracy of the cascade using X and y.

:param X_test: np.array

Array containing the test input samples.

Must be of the same shape as training data.

:param y_test: np.array

Test target values.

:return: float

the cascade accuracy.

"""

casc_pred_prob = np.mean(self.cascade_forest(X_test), axis=0)

casc_pred = np.argmax(casc_pred_prob, axis=1)

casc_accuracy = accuracy_score(y_true=y_test, y_pred=casc_pred)

print('Layer validation accuracy = {}'.format(casc_accuracy))

return casc_accuracy

Example 2

def mypsd(Rates,time_range,bin_w = 5., nmax = 4000):

bins = np.arange(0,len(time_range),1)

#print bins

a,b = np.histogram(Rates, bins)

ff = (1./len(bins))*abs(np.fft.fft(Rates- np.mean(Rates)))**2

Fs = 1./(1*0.001)

freq2 = np.fft.fftfreq(len(bins))[0:len(bins/2)+1] # d= dt

freq = np.fft.fftfreq(len(bins))[:len(ff)/2+1]

px = ff[0:len(ff)/2+1]

max_px = np.max(px[1:])

idx = px == max_px

corr_freq = freq[pl.find(idx)]

new_px = px

max_pow = new_px[pl.find(idx)]

return new_px,freq,corr_freq[0],freq2, max_pow

Example 3

def evaluate(self, dataset):

predictions = self.predict(dataset[:,0])

confusion_matrix = sklearn_confusion_matrix(dataset[:,1], predictions, labels=self.__classes)

precisions = []

recalls = []

accuracies = []

for gender in self.__classes:

idx = self.__classes_indexes[gender]

precision = 1

recall = 1

if np.sum(confusion_matrix[idx,:]) > 0:

precision = confusion_matrix[idx][idx]/np.sum(confusion_matrix[idx,:])

if np.sum(confusion_matrix[:, idx]) > 0:

recall = confusion_matrix[idx][idx]/np.sum(confusion_matrix[:, idx])

precisions.append(precision)

recalls.append(recall)

precision = np.mean(precisions)

recall = np.mean(recalls)

f1 = (2*(precision*recall))/float(precision+recall)

accuracy = np.sum(confusion_matrix.diagonal())/float(np.sum(confusion_matrix))

return precision, recall, accuracy, f1

Example 4

def compute_nystrom(ds_name, use_node_labels, embedding_dim, community_detection_method, kernels):

if ds_name=="SYNTHETIC":

graphs, labels = generate_synthetic()

else:

graphs, labels = load_data(ds_name, use_node_labels)

communities, subgraphs = compute_communities(graphs, use_node_labels, community_detection_method)

print("Number of communities: ", len(communities))

lens = []

for community in communities:

lens.append(community.number_of_nodes())

print("Average size: %.2f" % np.mean(lens))

Q=[]

for idx, k in enumerate(kernels):

model = Nystrom(k, n_components=embedding_dim)

model.fit(communities)

Q_t = model.transform(communities)

Q_t = np.vstack([np.zeros(embedding_dim), Q_t])

Q.append(Q_t)

return Q, subgraphs, labels, Q_t.shape

Example 5

def xloads(self):

# Xloadings

A = self.data_.transpose().values

B = self.fscores.transpose().values

A_mA = A - A.mean(1)[:, None]

B_mB = B - B.mean(1)[:, None]

ssA = (A_mA**2).sum(1)

ssB = (B_mB**2).sum(1)

xloads_ = (np.dot(A_mA, B_mB.T) /

np.sqrt(np.dot(ssA[:, None], ssB[None])))

xloads = pd.DataFrame(

xloads_, index=self.manifests, columns=self.latent)

return xloads

Example 6

def encode_and_store(batch_x, output_dir, file_name):

"""

Args:

1. batch_x:Batch of 32*32 images which will go inside our autoencoder.

2. output_dir:Dir path for storing all encoded features for given `batch_x`.

Features will be stored in the form of JSON file.

3. file_name:File name of JSON file.

"""

global AUTO_ENCODER

if AUTO_ENCODER is None:

load_AE()

norm_batch = np.zeros(batch_x.shape)

for i in range(len(batch_x)):

norm_batch[i] = (batch_x[i] - np.mean(batch_x[i])) / np.std(batch_x[i])

output_dict = {

'name' : file_name,

'encoded': AUTO_ENCODER.transform(norm_batch).tolist()}

with open(output_dir+file_name+'.json', 'w') as f:

json.dump(output_dict, f)

Example 7

def plot_qual(ax, quallist, invert=False):

'''

Create a FastQC-like "?Per base sequence quality?" plot

Plot average quality per position

zip will stop when shortest read is exhausted

'''

sns.set_style("darkgrid")

if invert:

l_Q, = ax.plot(np.array([np.mean(position) for position in zip(

*[list(reversed(read)) for read in quallist])]), 'orange', label="Quality")

ax.set_xlabel('Position in read from end')

ax.set_xticklabels(-1 * ax.get_xticks().astype(int))

else:

l_Q, = ax.plot(np.array([np.mean(position)

for position in zip(*quallist)]), 'orange', label="Quality")

ax.set_xlabel('Position in read from start')

return l_Q

Example 8

def update_data_sort_order(self, new_sort_order=None):

if new_sort_order is not None:

self.current_order = new_sort_order

self.update_sort_idcs()

self.data_image.set_extent((self.raw_lags[0], self.raw_lags[-1],

0, len(self.sort_idcs)))

self.data_ax.set_ylim(0, len(self.sort_idcs))

all_raw_data = self.raw_data

all_raw_data /= (1 + self.raw_data.mean(1)[:, np.newaxis])

if len(all_raw_data) > 0:

cmax = 0.5*all_raw_data.max()

cmin = 0.5*all_raw_data.min()

all_raw_data = all_raw_data[self.sort_idcs, :]

else:

cmin = 0

cmax = 1

self.data_image.set_data(all_raw_data)

self.data_image.set_clim(cmin, cmax)

self.data_selection.set_y(len(self.sort_idcs)-len(self.selected_points))

self.data_selection.set_height(len(self.selected_points))

self.update_data_plot()

Example 9

def get_color_medio(self, roi, a,b,imprimir = False):

xl,yl,ch = roi.shape

roiyuv = cv2.cvtColor(roi,cv2.COLOR_RGB2YUV)

roihsv = cv2.cvtColor(roi,cv2.COLOR_RGB2HSV)

h,s,v=cv2.split(roihsv)

mask=(h<5)

h[mask]=200

roihsv = cv2.merge((h,s,v))

std = np.std(roiyuv.reshape(xl*yl,3),axis=0)

media = np.mean(roihsv.reshape(xl*yl,3), axis=0)-60

mediayuv = np.mean(roiyuv.reshape(xl*yl,3), axis=0)

if std[0]<12 and std[1]<12 and std[2]<12:

#if (std[0]<15 and std[2]<15) or ((media[0]>100 or media[0]<25) and (std[0]>10)):

media = np.mean(roihsv.reshape(xl*yl,3), axis=0)

# el amarillo tiene 65 de saturacion y sobre 200

if media[1]<60: #and (abs(media[0]-30)>10):

# blanco

return [-10,0,0]

else:

return media

else:

return None

Example 10

def information_ratio(algorithm_returns, benchmark_returns):

"""

http://en.wikipedia.org/wiki/Information_ratio

Args:

algorithm_returns (np.array-like):

All returns during algorithm lifetime.

benchmark_returns (np.array-like):

All benchmark returns during algo lifetime.

Returns:

float. Information ratio.

"""

relative_returns = algorithm_returns - benchmark_returns

relative_deviation = relative_returns.std(ddof=1)

if zp_math.tolerant_equals(relative_deviation, 0) or \

np.isnan(relative_deviation):

return 0.0

return np.mean(relative_returns) / relative_deviation

Example 11

def testStartStopModulation(self):

radiusInMilliRad= 12.4

frequencyInHz= 100.

centerInMilliRad= [-10, 15]

self._tt.setTargetPosition(centerInMilliRad)

self._tt.startModulation(radiusInMilliRad,

frequencyInHz,

centerInMilliRad)

self.assertTrue(

np.allclose(

[1, 1, 0],

self._ctrl.getWaveGeneratorStartStopMode()))

waveform= self._ctrl.getWaveform(1)

wants= self._tt._milliRadToGcsUnitsOneAxis(-10, self._tt.AXIS_A)

got= np.mean(waveform)

self.assertAlmostEqual(

wants, got, msg="wants %g, got %g" % (wants, got))

wants= self._tt._milliRadToGcsUnitsOneAxis(-10 + 12.4, self._tt.AXIS_A)

got= np.max(waveform)

self.assertAlmostEqual(

wants, got, msg="wants %g, got %g" % (wants, got))

self._tt.stopModulation()

self.assertTrue(

np.allclose(centerInMilliRad, self._tt.getTargetPosition()))

Example 12

def monitor(data_feeder):

"""

Cost and time of test_fn on a given dataset section.

Pass only one of `valid_feeder` or `test_feeder`.

Don't pass `train_feed`.

:returns:

Mean cost over the input dataset (data_feeder)

Total time spent

"""

_total_time = time()

_h0 = numpy.zeros((BATCH_SIZE, N_RNN, H0_MULT*DIM), dtype='float32')

_big_h0 = numpy.zeros((BATCH_SIZE, N_RNN, H0_MULT*BIG_DIM), dtype='float32')

_costs = []

_data_feeder = load_data(data_feeder)

for _seqs, _reset, _mask in _data_feeder:

_cost, _big_h0, _h0 = test_fn(_seqs, _big_h0, _h0, _reset, _mask)

_costs.append(_cost)

return numpy.mean(_costs), time() - _total_time

Example 13

def monitor(data_feeder):

"""

Cost and time of test_fn on a given dataset section.

Pass only one of `valid_feeder` or `test_feeder`.

Don't pass `train_feed`.

:returns:

Mean cost over the input dataset (data_feeder)

Total time spent

"""

_total_time = time()

_h0 = numpy.zeros((BATCH_SIZE, N_RNN, H0_MULT*DIM), dtype='float32')

_costs = []

_data_feeder = load_data(data_feeder)

for _seqs, _reset, _mask in _data_feeder:

_cost, _h0 = test_fn(_seqs, _h0, _reset, _mask)

_costs.append(_cost)

return numpy.mean(_costs), time() - _total_time

Example 14

def monitor(data_feeder):

"""

Cost and time of test_fn on a given dataset section.

Pass only one of `valid_feeder` or `test_feeder`.

Don't pass `train_feed`.

:returns:

Mean cost over the input dataset (data_feeder)

Total time spent

"""

_total_time = time()

_h0 = numpy.zeros((BATCH_SIZE, N_RNN, H0_MULT*DIM), dtype='float32')

_costs = []

_data_feeder = load_data(data_feeder)

for _seqs, _reset, _mask in _data_feeder:

_cost, _h0 = test_fn(_seqs, _h0, _reset, _mask)

_costs.append(_cost)

return numpy.mean(_costs), time() - _total_time

Example 15

def doesnt_match(self, words):

"""

Which word from the given list doesn't go with the others?

Example::

>>> trained_model.doesnt_match("breakfast cereal dinner lunch".split())

'cereal'

"""

words = [word for word in words if word in self.vocab] # filter out OOV words

logger.debug("using words %s" % words)

if not words:

raise ValueError("cannot select a word from an empty list")

# which word vector representation is furthest away from the mean?

selection = self.syn0norm[[self.vocab[word].index for word in words]]

mean = np.mean(selection, axis=0)

sim = np.dot(selection, mean / np.linalg.norm(mean))

return words[np.argmin(sim)]

Example 16

def effective_sample_size(x, mu, var, logger):

"""

Calculate the effective sample size of sequence generated by MCMC.

:param x:

:param mu: mean of the variable

:param var: variance of the variable

:param logger: logg

:return: effective sample size of the sequence

Make sure that `mu` and `var` are correct!

"""

# batch size, time, dimension

b, t, d = x.shape

ess_ = np.ones([d])

for s in range(1, t):

p = auto_correlation_time(x, s, mu, var)

if np.sum(p > 0.05) == 0:

break

else:

for j in range(0, d):

if p[j] > 0.05:

ess_[j] += 2.0 * p[j] * (1.0 - float(s) / t)

logger.info('ESS: max [%f] min [%f] / [%d]' % (t / np.min(ess_), t / np.max(ess_), t))

return t / ess_

Example 17

def apply(self, referenceSamples=None, testSamples=None, gaussianCenters=None) :

"""

Calculates the alpha-relative Pearson divergence score

"""

densityRatioEstimator = AlphaRelativeDensityRatioEstimator(self.alphaConstraint ,

self.sigmaWidth ,

self.lambdaRegularizer,

self.kernelBasis )

# Estimate alpha relative density ratio and pearson divergence score

(r_alpha_Xref, r_alpha_Xtest) = densityRatioEstimator.apply(referenceSamples, testSamples, gaussianCenters)

PE_divergence = ( numpy.mean(r_alpha_Xref) -

( 0.5 * ( self.alphaConstraint * numpy.mean(r_alpha_Xref ** 2) +

(1.0 - self.alphaConstraint) * numpy.mean(r_alpha_Xtest ** 2) ) ) - 0.5)

return (PE_divergence, r_alpha_Xtest)

Example 18

def test(self, input_path, output_path):

if not self.load()[0]:

raise Exception("No model is found, please train first")

mean, std = self.sess.run([self.mean, self.std])

images = np.empty((1, self.im_size[0], self.im_size[1], self.im_size[2], 1), dtype=np.float32)

#labels = np.empty((1, self.im_size[0], self.im_size[1], self.im_size[2], self.nclass), dtype=np.float32)

for f in input_path:

images[0, ..., 0], read_info = read_testing_inputs(f, self.roi[0], self.im_size, output_path)

probs = self.sess.run(self.probs, feed_dict = { self.images: (images - mean) / std,

self.is_training: True,

self.keep_prob: 1 })

#print(self.roi[1] + os.path.basename(f) + ":" + str(dice))

output_file = os.path.join(output_path, self.roi[1] + '_' + os.path.basename(f))

f_h5 = h5py.File(output_file, 'w')

if self.roi[0] < 0:

f_h5['predictions'] = restore_labels(np.argmax(probs[0], 3), self.roi[0], read_info)

else:

f_h5['probs'] = restore_labels(probs[0, ..., 1], self.roi[0], read_info)

f_h5.close()

Example 19

def transfer_color(content, style):

import scipy.linalg as sl

# Mean and covariance of content

content_mean = np.mean(content, axis = (0, 1))

content_diff = content - content_mean

content_diff = np.reshape(content_diff, (-1, content_diff.shape[2]))

content_covariance = np.matmul(content_diff.T, content_diff) / (content_diff.shape[0])

# Mean and covariance of style

style_mean = np.mean(style, axis = (0, 1))

style_diff = style - style_mean

style_diff = np.reshape(style_diff, (-1, style_diff.shape[2]))

style_covariance = np.matmul(style_diff.T, style_diff) / (style_diff.shape[0])

# Calculate A and b

A = np.matmul(sl.sqrtm(content_covariance), sl.inv(sl.sqrtm(style_covariance)))

b = content_mean - np.matmul(A, style_mean)

# Construct new style

new_style = np.reshape(style, (-1, style.shape[2])).T

new_style = np.matmul(A, new_style).T

new_style = np.reshape(new_style, style.shape)

new_style = new_style + b

return new_style

Example 20

def get_selective_mirrors(self, number=None):

"""get mirror genotypic directions from worst solutions.

Details:

To be called after the mean has been updated.

Takes the last ``number=sp.lam_mirr`` entries in the

``self.pop[self.fit.idx]`` as solutions to be mirrored.

Do not take a mirror if it is suspected to stem from a

previous mirror in order to not go endlessly back and forth.

"""

if number is None:

number = self.sp.lam_mirr

if not hasattr(self, '_indices_of_selective_mirrors'):

self._indices_of_selective_mirrors = []

res = []

for i in range(1, number + 1):

if 'all-selective-mirrors' in self.opts['vv'] or self.fit.idx[-i] not in self._indices_of_selective_mirrors:

res.append(self.mean_old - self.pop[self.fit.idx[-i]])

assert len(res) >= number - len(self._indices_of_selective_mirrors)

return res

# ____________________________________________________________

Example 21

def result(self):

"""return a `CMAEvolutionStrategyResult` `namedtuple`.

:See: `cma.evolution_strategy.CMAEvolutionStrategyResult`

or try ``help(...result)`` on the ``result`` property

of an `CMAEvolutionStrategy` instance or on the

`CMAEvolutionStrategyResult` instance itself.

"""

# TODO: how about xcurrent?

# return CMAEvolutionStrategyResult._generate(self)

res = self.best.get() + ( # (x, f, evals) triple

self.countevals,

self.countiter,

self.gp.pheno(self.mean),

self.gp.scales * self.sigma * self.sigma_vec.scaling *

self.dC**0.5)

try:

return CMAEvolutionStrategyResult(*res)

except NameError:

return res

Example 22

def result_pretty(self, number_of_runs=0, time_str=None,

fbestever=None):

"""pretty print result.

Returns `result` of ``self``.

"""

if fbestever is None:

fbestever = self.best.f

s = (' after %i restart' + ('s' if number_of_runs > 1 else '')) \

% number_of_runs if number_of_runs else ''

for k, v in self.stop().items():

print('termination on %s=%s%s' % (k, str(v), s +

(' (%s)' % time_str if time_str else '')))

print('final/bestever f-value = %e %e' % (self.best.last.f,

fbestever))

if self.N < 9:

print('incumbent solution: ' + str(list(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair))))

print('std deviation: ' + str(list(self.sigma * self.sigma_vec.scaling * np.sqrt(self.dC) * self.gp.scales)))

else:

print('incumbent solution: %s ...]' % (str(self.gp.pheno(self.mean, into_bounds=self.boundary_handler.repair)[:8])[:-1]))

print('std deviations: %s ...]' % (str((self.sigma * self.sigma_vec.scaling * np.sqrt(self.dC) * self.gp.scales)[:8])[:-1]))

return self.result

Example 23

def isotropic_mean_shift(self):

"""normalized last mean shift, under random selection N(0,I)

distributed.

Caveat: while it is finite and close to sqrt(n) under random

selection, the length of the normalized mean shift under

*systematic* selection (e.g. on a linear function) tends to

infinity for mueff -> infty. Hence it must be used with great

care for large mueff.

"""

z = self.sm.transform_inverse((self.mean - self.mean_old) /

self.sigma_vec.scaling)

# works unless a re-parametrisation has been done

# assert Mh.vequals_approximately(z, np.dot(es.B, (1. / es.D) *

# np.dot(es.B.T, (es.mean - es.mean_old) / es.sigma_vec)))

z /= self.sigma * self.sp.cmean

z *= self.sp.weights.mueff**0.5

return z

Example 24

def sample(self, number, lazy_update_gap=None, same_length=False):

self.update_now(lazy_update_gap)

arz = self.randn(number, self.dimension)

if same_length:

if same_length is True:

len_ = self.chiN

else:

len_ = same_length # presumably N**0.5, useful if self.opts['CSA_squared']

for i in rglen(arz):

ss = sum(arz[i]**2)

if 1 < 3 or ss > self.N + 10.1:

arz[i] *= len_ / ss**0.5

# or to average

# arz *= 1 * self.const.chiN / np.mean([sum(z**2)**0.5 for z in arz])

ary = np.dot(self.B, (self.D * arz).T).T

# self.ary = ary # needed whatfor?

return ary

Example 25

def norm(self, x):

"""compute the Mahalanobis norm that is induced by the

statistical model / sample distribution, specifically by

covariance matrix ``C``. The expected Mahalanobis norm is

about ``sqrt(dimension)``.

Example

-------

>>> import cma, numpy as np

>>> sm = cma.sampler.GaussFullSampler(np.ones(10))

>>> x = np.random.randn(10)

>>> d = sm.norm(x)

`d` is the norm "in" the true sample distribution,

sampled points have a typical distance of ``sqrt(2*sm.dim)``,

where ``sm.dim`` is the dimension, and an expected distance of

close to ``dim**0.5`` to the sample mean zero. In the example,

`d` is the Euclidean distance, because C = I.

"""

return sum((np.dot(self.B.T, x) / self.D)**2)**0.5

Example 26

def sample(self, number, same_length=False):

arz = self.randn(number, self.dimension)

if same_length:

if same_length is True:

len_ = self.chin

else:

len_ = same_length # presumably N**0.5, useful if self.opts['CSA_squared']

for i in rglen(arz):

ss = sum(arz[i]**2)

if 1 < 3 or ss > self.N + 10.1:

arz[i] *= len_ / ss**0.5

# or to average

# arz *= 1 * self.const.chiN / np.mean([sum(z**2)**0.5 for z in arz])

ary = self.C**0.5 * arz

# self.ary = ary # needed whatfor?

return ary

Example 27

def norm(self, x):

"""compute the Mahalanobis norm that is induced by the

statistical model / sample distribution, specifically by

covariance matrix ``C``. The expected Mahalanobis norm is

about ``sqrt(dimension)``.

Example

-------

>>> import cma, numpy as np

>>> sm = cma.sampler.GaussFullSampler(np.ones(10))

>>> x = np.random.randn(10)

>>> d = sm.norm(x)

`d` is the norm "in" the true sample distribution,

sampled points have a typical distance of ``sqrt(2*sm.dim)``,

where ``sm.dim`` is the dimension, and an expected distance of

close to ``dim**0.5`` to the sample mean zero. In the example,

`d` is the Euclidean distance, because C = I.

"""

return sum(np.asarray(x)**2 / self.C)**0.5

Example 28

def update_measure(self):

"""updated noise level measure using two fitness lists ``self.fit`` and

``self.fitre``, return ``self.noiseS, all_individual_measures``.

Assumes that ``self.idx`` contains the indices where the fitness

lists differ.

"""

lam = len(self.fit)

idx = np.argsort(self.fit + self.fitre)

ranks = np.argsort(idx).reshape((2, lam))

rankDelta = ranks[0] - ranks[1] - np.sign(ranks[0] - ranks[1])

# compute rank change limits using both ranks[0] and ranks[1]

r = np.arange(1, 2 * lam) # 2 * lam - 2 elements

limits = [0.5 * (Mh.prctile(np.abs(r - (ranks[0, i] + 1 - (ranks[0, i] > ranks[1, i]))),

self.theta * 50) +

Mh.prctile(np.abs(r - (ranks[1, i] + 1 - (ranks[1, i] > ranks[0, i]))),

self.theta * 50))

for i in self.idx]

# compute measurement

# max: 1 rankchange in 2*lambda is always fine

s = np.abs(rankDelta[self.idx]) - Mh.amax(limits, 1) # lives roughly in 0..2*lambda

self.noiseS += self.cum * (np.mean(s) - self.noiseS)

return self.noiseS, s

Example 29

def mse(ypredict, ytrue):

"""

>>> mse(1.0, 3.0)

4.0

"""

diff = ypredict - ytrue

return np.mean(diff**2)

Example 30

def compute_score(self, gts, res):

"""

Computes Rouge-L score given a set of reference and candidate sentences for the dataset

Invoked by evaluate_captions.py

:param hypo_for_image: dict : candidate / test sentences with "image name" key and "tokenized sentences" as values

:param ref_for_image: dict : reference MS-COCO sentences with "image name" key and "tokenized sentences" as values

:returns: average_score: float (mean ROUGE-L score computed by averaging scores for all the images)

"""

assert(gts.keys() == res.keys())

imgIds = gts.keys()

score = []

for id in imgIds:

hypo = res[id]

ref = gts[id]

score.append(self.calc_score(hypo, ref))

# Sanity check.

assert(type(hypo) is list)

assert(len(hypo) == 1)

assert(type(ref) is list)

assert(len(ref) > 0)

average_score = np.mean(np.array(score))

return average_score, np.array(score)

Example 31

def analytic_convolution_gaussian(mu1,covar1,mu2,covar2):

"""

The analytic vconvolution of two Gaussians is simply the sum of the two mean vectors

and the two convariance matrixes

--- INPUT ---

mu1 The mean of the first gaussian

covar1 The covariance matrix of of the first gaussian

mu2 The mean of the second gaussian

covar2 The covariance matrix of of the second gaussian

"""

muconv = mu1+mu2

covarconv = covar1+covar2

return muconv, covarconv

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

Example 32

def reshape_array(array, newsize, pixcombine='sum'):

"""

Reshape an array to a give size using either the sum, mean or median of the pixels binned

Note that the old array dimensions have to be multiples of the new array dimensions

--- INPUT ---

array Array to reshape (combine pixels)

newsize New size of array

pixcombine The method to combine the pixels with. Choices are sum, mean and median

"""

sh = newsize[0],array.shape[0]//newsize[0],newsize[1],array.shape[1]//newsize[1]

pdb.set_trace()

if pixcombine == 'sum':

reshapedarray = array.reshape(sh).sum(-1).sum(1)

elif pixcombine == 'mean':

reshapedarray = array.reshape(sh).mean(-1).mean(1)

elif pixcombine == 'median':

reshapedarray = array.reshape(sh).median(-1).median(1)

return reshapedarray

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

Example 33

def smooth_colors(src, dst, src_l):

blur_amount = BLUR_FRACTION * np.linalg.norm(np.mean(src_l[LEFT_EYE_IDX], axis = 0) - np.mean(src_l[RIGHT_EYE_IDX], axis = 0))

blur_amount = (int)(blur_amount)

if blur_amount % 2 == 0:

blur_amount += 1

src_blur = cv2.GaussianBlur(src, (blur_amount, blur_amount), 0)

dst_blur = cv2.GaussianBlur(dst, (blur_amount, blur_amount), 0)

dst_blur += (128 * ( dst_blur <= 1.0 )).astype(dst_blur.dtype)

return (np.float64(dst) * np.float64(src_blur)/np.float64(dst_blur))

Example 34

def get_tm_opp(pts1, pts2):

# Transformation matrix - ( Translation + Scaling + Rotation )

# using Procuster analysis

pts1 = np.float64(pts1)

pts2 = np.float64(pts2)

m1 = np.mean(pts1, axis = 0)

m2 = np.mean(pts2, axis = 0)

# Removing translation

pts1 -= m1

pts2 -= m2

std1 = np.std(pts1)

std2 = np.std(pts2)

std_r = std2/std1

# Removing scaling

pts1 /= std1

pts2 /= std2

U, S, V = np.linalg.svd(np.transpose(pts1) * pts2)

# Finding the rotation matrix

R = np.transpose(U * V)

return np.vstack([np.hstack((std_r * R,

np.transpose(m2) - std_r * R * np.transpose(m1))), np.matrix([0.0, 0.0, 1.0])])

Example 35

def fit(self, x):

s = x.shape

x = x.copy().reshape((s[0],np.prod(s[1:])))

m = np.mean(x, axis=0)

x -= m

sigma = np.dot(x.T,x) / x.shape[0]

U, S, V = linalg.svd(sigma)

tmp = np.dot(U, np.diag(1./np.sqrt(S+self.regularization)))

tmp2 = np.dot(U, np.diag(np.sqrt(S+self.regularization)))

self.ZCA_mat = th.shared(np.dot(tmp, U.T).astype(th.config.floatX))

self.inv_ZCA_mat = th.shared(np.dot(tmp2, U.T).astype(th.config.floatX))

self.mean = th.shared(m.astype(th.config.floatX))

Example 36

def apply(self, x):

s = x.shape

if isinstance(x, np.ndarray):

return np.dot(x.reshape((s[0],np.prod(s[1:]))) - self.mean.get_value(), self.ZCA_mat.get_value()).reshape(s)

elif isinstance(x, T.TensorVariable):

return T.dot(x.flatten(2) - self.mean.dimshuffle('x',0), self.ZCA_mat).reshape(s)

else:

raise NotImplementedError("Whitening only implemented for numpy arrays or Theano TensorVariables")

Example 37

def invert(self, x):

s = x.shape

if isinstance(x, np.ndarray):

return (np.dot(x.reshape((s[0],np.prod(s[1:]))), self.inv_ZCA_mat.get_value()) + self.mean.get_value()).reshape(s)

elif isinstance(x, T.TensorVariable):

return (T.dot(x.flatten(2), self.inv_ZCA_mat) + self.mean.dimshuffle('x',0)).reshape(s)

else:

raise NotImplementedError("Whitening only implemented for numpy arrays or Theano TensorVariables")

# T.nnet.relu has some issues with very large inputs, this is more stable

Example 38

def softmax_loss(p_true, output_before_softmax):

output_before_softmax -= T.max(output_before_softmax, axis=1, keepdims=True)

if p_true.ndim==2:

return T.mean(T.log(T.sum(T.exp(output_before_softmax),axis=1)) - T.sum(p_true*output_before_softmax, axis=1))

else:

return T.mean(T.log(T.sum(T.exp(output_before_softmax),axis=1)) - output_before_softmax[T.arange(p_true.shape[0]),p_true])

Example 39

def get_output_for(self, input, **kwargs):

return T.mean(input, axis=(2,3))

Example 40

def run_epoch_doc(docs, labels, tags, tm, pad_id, cf):

batches = int(math.ceil(float(len(docs))/cf.batch_size))

accs = []

for b in xrange(batches):

d, y, m, t, num_docs = get_batch_doc(docs, labels, tags, b, cf.doc_len, cf.tag_len, cf.batch_size, pad_id)

prob = sess.run(tm.sup_probs, {tm.doc:d, tm.label:y, tm.sup_mask: m, tm.tag: t})

pred = np.argmax(prob, axis=1)

accs.extend(pred[:num_docs] == y[:num_docs])

print "\ntest classification accuracy = %.3f" % np.mean(accs)

Example 41

def print_corpus_stats(name, sents, docs, stats):

print name + ":"

print "\tno. of docs =", len(docs[0])

if len(sents[0]) > 0:

print "\ttopic model no. of sequences =", len(sents[0])

print "\ttopic model no. of tokens =", sum([ len(item[2])-1 for item in sents[0] ])

print "\toriginal doc mean len =", stats[3]

print "\toriginal doc max len =", stats[4]

print "\toriginal doc min len =", stats[5]

if len(sents[1]) > 0:

print "\tlanguage model no. of sequences =", len(sents[1])

print "\tlanguage model no. of tokens =", sum([ len(item[2])-1 for item in sents[1] ])

print "\toriginal sent mean len =", stats[0]

print "\toriginal sent max len =", stats[1]

print "\toriginal sent min len =", stats[2]

Example 42

def MSE(self, responses):

mean = np.mean(responses, axis=0)

return np.mean((responses - mean) ** 2)

Example 43

def make_leaf(self, responses):

self.leaf = np.mean(responses, axis=0)

Example 44

def predict(self, point):

response = []

for i in range(self.ntrees):

response.append(self.trees[i].predict(point))

return np.mean(response, axis=0)

Example 45

def normaliza(self, X):

correction = np.sqrt((len(X) - 1) / len(X)) # std factor corretion

mean_ = np.mean(X, 0)

scale_ = np.std(X, 0)

X = X - mean_

X = X / (scale_ * correction)

return X

Example 46

def gof(self):

r2mean = np.mean(self.r2.T[self.endoexo()[0]].values)

AVEmean = self.AVE().copy()

totalblock = 0

for i in range(self.lenlatent):

block = self.data_[self.Variables['measurement']

[self.Variables['latent'] == self.latent[i]]]

block = len(block.columns.values)

totalblock += block

AVEmean[self.latent[i]] = AVEmean[self.latent[i]] * block

AVEmean = np.sum(AVEmean) / totalblock

return np.sqrt(AVEmean * r2mean)

Example 47

def srmr(self):

srmr = (self.empirical() - self.implied())

srmr = np.sqrt(((srmr.values) ** 2).mean())

return srmr

Example 48

def dataInfo(self):

sd_ = np.std(self.data, 0)

mean_ = np.mean(self.data, 0)

skew = scipy.stats.skew(self.data)

kurtosis = scipy.stats.kurtosis(self.data)

w = [scipy.stats.shapiro(self.data.ix[:, i])[0]

for i in range(len(self.data.columns))]

return [mean_, sd_, skew, kurtosis, w]

Example 49

def htmt(self):

htmt_ = pd.DataFrame(pd.DataFrame.corr(self.data_),

index=self.manifests, columns=self.manifests)

mean = []

allBlocks = []

for i in range(self.lenlatent):

block_ = self.Variables['measurement'][

self.Variables['latent'] == self.latent[i]]

allBlocks.append(list(block_.values))

block = htmt_.ix[block_, block_]

mean_ = (block - np.diag(np.diag(block))).values

mean_[mean_ == 0] = np.nan

mean.append(np.nanmean(mean_))

comb = [[k, j] for k in range(self.lenlatent)

for j in range(self.lenlatent)]

comb_ = [(np.sqrt(mean[comb[i][1]] * mean[comb[i][0]]))

for i in range(self.lenlatent ** 2)]

comb__ = []

for i in range(self.lenlatent ** 2):

block = (htmt_.ix[allBlocks[comb[i][1]],

allBlocks[comb[i][0]]]).values

# block[block == 1] = np.nan

comb__.append(np.nanmean(block))

htmt__ = np.divide(comb__, comb_)

where_are_NaNs = np.isnan(htmt__)

htmt__[where_are_NaNs] = 0

htmt = pd.DataFrame(np.tril(htmt__.reshape(

(self.lenlatent, self.lenlatent)), k=-1), index=self.latent, columns=self.latent)

return htmt

Example 50

def obs_callback(self, msg):

cn0 = np.array([obs.cn0/4.0 for obs in msg.obs])

m = SignalStatus()

m.header.stamp = rospy.Time.now()

m.mean_cn0 = np.mean(cn0)

m.median_cn0 = np.median(cn0)

m.robust_mean_cn0 = np.mean(reject_outliers(cn0))

m.num_sats = len(msg.obs)

self.signal_pub.publish(m)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值