数学是研究数和形的学科。表面看来,数和形好似两码事,其实,在数学里数和形是密切联系的。我们常常用代数的方法来处理几何图形问题,反过来,也借助于几何图形来理解代数概念,寻找解题思路。这种数与形之间的相互应用,是一种重要的数学思想。
运用数形结合思想的关键是建立数与形之间的联系,那么,如何建立数与形之间的联系呢?现在有了一个很好的工具——数轴。
那么,什么叫做数轴?怎样画一条正确的数轴?如何用数轴上的点表示数的呢?这就是我们今天要学习的内容。
一、数轴的定义
1.在古代,部落酋长上任时先在绳上打了个红绳结表示财物往来从0开始,如捕获一只羊在红绳结右边顺次打一个结,每向其他部落借一只羊就在红绳结左边顺次打一个结,你能解读如图所示A、B两处绳结的含义吗?
A的意义是捕获了两只羊,B的意义是向其他部落借了3只羊。
2.你会读温度计吗?
(1)温度计刻度的正负是怎样规定的?以什么为基准?基准刻度线表示多少摄氏度?
以零摄氏度为基准刻度线,超过零摄氏度为正,低于零摄氏度为负。
(2)每摄氏度两条刻度线之间的距离有什么特点?
每两条刻度线之间的距离是相等的。
3.数轴的定义
在数学上,数轴就是规定了原点、正方向和单位长度的直线叫做数轴。
4.注意事项:
(1)数轴是一条特殊的直线;
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度。
二、怎样画数轴
画数轴的步骤:① 画直线,定原点
② 从原点向右(或上)的方向为正方向,从原点向左(或下)为负方向。
③ 选取适当长度为单位长度。
④ 在数轴上标出1、2、3、—1、—2、—3等各点。如图4所示。
2.想一想:下列各图是数轴吗?说明你的理由。
根据数轴的定义,我们可以知道:(1)不是数轴,因为没有规定正方向。(2)不是数轴,因为没有原点。(3)是数轴。(4)不是数轴,因为没有规定单位长度。(5)不是数轴,因为单位长度不等。
三、如何用数轴表示数
1.议一议:
(1)如何用数轴上的点来表示分数或小数?如:1.5, -1.5 怎样表示。
如图6所示:
(2)所有有理数都可以用数轴上的点来表示吗
所有的有理数都可以用数轴上的点表示!
四、例题讲解
例1:在所给数轴上画出表示下列各数的点。
1,-5,-2.5, 9/2 , 0
解:如图8所示:
注意:
①把点标在线上;
②把数标在点的上方, 以便观看。
例 2 在下面数轴上,A,B,C,D各点分别表示什么数?
解:A 点表示2; B 点表示0.25;
C点表示—0.75;D点表示—1.5。
归纳:
数轴上表示数2的点在原点的右边,与原点的距离是2个单位长度;表示-2的点在原点的左边,与原点的距离是2个单位长度.
一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示-a的点在原点的左边,与原点的距离是a个单位长度.
五、小结
1、数轴的意义:数轴的三要素。
① 定义:规定了原点、正方向和单位长度的直线叫数轴。
② 三要素:原点、正方向、单位长度
2、数轴的画法。
3、所有的有理数都可以用数轴上的点来表示,原点右边的数是正数,原点左边的数是负数,0是正负数的分界限。
4、数形结合思想的应用。
六、练习
1.填空:
①规定了_________、________和_________的_________叫数轴。
②在数轴上,原点右边的数都是_________ 数,原点左边的数都是_________ 数。
2.判断:
①数轴上的点只能表示整数。( )
②两个不同的有理数,可以用数轴上同一个点表示。( )
③5可以用数轴上原点左边第5个单位的点来表示。( )
3、选择:
①A、B、C在数轴上的位置如下图,则A、B、C所表示的数是
A.A、B、C都表示正数 B.A、B表示正数,C表示负数
C.A、B、C都表示负数 D.A、B表示负数,C表示正数
②在下面各图中表示数轴的是
答案:1.①原点、正方向、单位长度、直线;②正,负
2.①错;②错;③错
3.①B;②D