直线和圆交点 halcon_复数与几何(二) 直线与圆

一.直线的方程

参数方程 设复平面上的直线

经过点
它的一个方向向量对应的复数为
则直线
的参数方程为

点方向式方程 由于点

在直线
上的充要条件是存在
使得上述参数方程表达式成立,所以还可以将直线
的方程表示为
得直线的点方向式方程为
(请注意:点方向式方程等号右边一定是纯虚数或 0)

点法式方程 设直线

的一个法向量对应的复数为
则可取
代入点方向式方程,得点法式方程为

两点式方程 设直线

经过
两点,则则可取
代入点方向式方程,得两点式方程为

线段的垂直平分线方程 给定复平面上的线段

则线段
的垂直平分线方程为

1.三点共线

若复平面上的三点

共线,则由
在直线
上,利用直线的两点式方程得
为了便于记忆且使用方便,整理并改写为行列式形式,即得

定理 复平面上的三点

共线的充要条件是

2.三线共点

设复平面上有三条互不平行的直线,用点方向式方程表示为

则这三条直线共点当且仅当
有公共解.以下略去后面的推导过程,直接给出结论,请读者自行推导(有高等代数基础的读者可以利用Cramer法则).

定理 复平面上三条互不平行的直线

共点的充要条件是

3.对称点与投影

设点

关于直线
对称,
为直线
上一点,
是直线
的一个方向向量对应的复数,则易知
所以
故得以下定理:

定理 已知

为复平面上一直线,
经过点
是直线
的一个方向向量对应的复数,则点
关于
的对称点
和在
上的投影
分别为

例1 如图,设点

所在平面内一点,直线
经过点
分别为直线
关于
的对称直线与
的交点.求证:
三点共线.

db772e84e5867a19e07fcc0518f65231.png

证明:以

为原点,直线
为虚轴建立复平面,设
则只需证
(
中任意一点与
顶点之一重合时这样假设是错误的,但此时结论显然成立)

由定比分点公式得

又由对称及图可知
所以

同理可得

证毕.

前面我们已经得出了三点共线的一个充要条件,但这个定理只有在计算量非常小的时候用起来才比较方便.大多数情况下,计算相关的行列式比较复杂,往往结合平面几何的一些定理来证明更简洁.

例2 如图,

内有一点
使得
上的投影为
中点为
求证:

a10e2586f60f5d9cd9566e7f2ceec7bc.png

证明:由投影公式得

则只需证
结合

则可设

所以

两边取模得

证毕!

请注意这里对角相等的条件的应用.如果直接写成

反而会使问题变得更加复杂.这里的变形也值得细细体会.

二.圆的方程

标准方程 设圆心为

半径为
则圆的方程用模表示为
平方整理得圆的标准方程为

一般方程

其中
该圆的圆心为
半径为

参数方程 圆的参数方程为

通常规定

最常使用的圆是以原点为圆心的单位圆

其上的点有性质
在不失一般性的情况下,使用该圆会带来很大便利.

1.四点共圆

平面上四点

顺次共圆的充要条件是
不妨设
逆时针排列,令
所以

定理 复平面上不共线的四点

共圆的充要条件是

2.圆的两弦的交点

为了方便,我们在单位圆

内进行推导.

设圆

的两弦
所在直线交点
对应的复数为
满足以下方程组:

略去过程,解得

尽管我们利用以原点为圆心的单位圆进行了简化,解的过程仍然比较复杂,请读者自行补全过程.

于是我们得到以下定理:

定理 设圆

的两弦
所在直线交点
对应的复数为

这个结论当然可以利用坐标变换推广到任意圆,通常情况下并不需要一般的结论,这里就不讨论了.

3.切点弦

设圆

外有一点
是圆的两条切线,则
称为点
对圆
的切点弦.直线
的方程可写为

注意到

代入上式,得

又有

(证略)

代入(*)式,就得到以下定理:

定理 圆

外一点
对该圆的切点弦所在直线的方程为

例3 圆内接四边形

的对角线交于点
的中点分别为
分别在
上,且
求证:

2b51968bef92db8a4848748daaf8715d.png

证明:不妨设外接圆为

由投影公式,得

所以

又因为

所以

显然

取共轭得到它的相反数,所以这是纯虚数.得证.

例4(莫莱(Morley)定理) 在

中,设分别接近于三边
的各内角的三等分线相交于
求证:
是等边三角形.

0a0dfb569892f4b5f4df93bfd3b920ba.png

证明:建立复平面,不妨设

外接圆的方程为

如图,延长各内角的三等分线交外接圆于

六点,则它们将
三等分.设

所以

还可以继续化简得

类似地,

要证明

是等边三角形,只需证

验证的过程不再赘述,得证.

"三等分线"的条件通过圆周来体现是非常巧妙的.本例中的

称为内Morley三角形,还有外Morley三角形和旁Morley三角形等.三角形的内外角三等分线共18条,它们的交点构成许多等边三角形,这是一个非常优美的性质.感兴趣的读者可以参考:
Morley魔方的美妙性质.pdf
150K
·
百度网盘

例5(牛顿定理2) 设

的外切四边形,
分别为
的中点.求证:
三点共线.

be0e17eb7bf9c64cdfc5083aa7b22dfb.png

证明:建立复平面,不妨设

的方程为

切点对应的复数分别为

那么

所以

得证.

这里设

的目的是使
的形式更简洁.圆的切线交点相关问题中,这样做往往能简化运算.

例6(清宫定理) 设

外接圆上异于顶点的两点,
关于
的对称点分别是
分别交
或其延长线于
三点共线.

bfefd61bd6db02300a5fc7cba434d250.png

证明:建立复平面,不妨设外接圆的方程为

则只需证

由定比分点公式得

由对称点公式得

三点共线可得

可以解得

同理可得

得证.

本题思路与例1相似,这为我们提供了证明三点共线问题的一种新思路.

例5和例6都可以用面积法证明,请参考:

Eequalsmcsquare:几何证明中的面积方法(下)

本期选择了一些较为典型且实用的复数证几何思路,希望能对读者有帮助.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值