python同时满足两个条件_dataframe设置两个条件取值的实例

这篇博客展示了如何使用Python的Pandas库对DataFrame进行条件操作,包括根据索引和列名取值、对列赋值、应用函数运算、去重、筛选以及转换数据类型。还介绍了如何设置和重置DataFrame的索引,并演示了如何按列分组并求和。
摘要由CSDN通过智能技术生成

如下所示:

>>> import pandas as pd

>>> import numpy as np

>>> from pandas import Series, DataFrame

>>> df = DataFrame({'name':['a','a','b','b'],'classes':[1,2,3,4],'price':[11,22,33,44]})

>>> df

classes name price

0 1 a 11

1 2 a 22

2 3 b 33

3 4 b 44

>>>

根据index和columns取值

>>> s = df.loc[0,'price']

>>> s

11

根据同行的columns的值取同行的另一个columns的值

>>> sex = df.loc[(df.classes==1)&(df.name=='a'),'price']

>>> sex

0 11

Name: price, dtype: int64

>>> sex = df.loc[(df.classes==1)&(df.name=='a'),'price'].values[0]

>>> sex

11

根据条件同时取得多个值

>>> name,price = df.loc[df.classes==1,('name','price')].values[0]

>>> name

'a'

>>> price

11

>>>

对一列赋值

>>> df.loc[: , 'price']=0

>>> df

classes name price

0 1 a 0

1 2 a 0

2 3 b 0

3 4 b 0

>>>

对df的一个列进行函数运算

【1】

>>> df['name'] = df['name'].apply(lambda x: x.upper())

>>> df

classes name price

0 1 A 11

1 2 A 22

2 3 B 33

3 4 B 44

【2】

>>> df.loc[:, 'name'] = df['name'].apply(lambda x: x.upper())

>>> df

classes name price

0 1 A 11

1 2 A 22

2 3 B 33

3 4 B 44

>>>

对df的几个列进行函数运算

【1】

>>> df[['classes','price']] = df[['classes', 'price']].applymap(lambda x: str(x))

>>> print(type(df.loc[0, "classes"]))

>>> print(df.loc[0, "classes"])

1

【2】

>>> df.loc[:, ['classes','price']] = df[['classes', 'price']].applymap(lambda x: int(x))

>>> print(type(df.loc[0, "classes"]))

>>> print(df.loc[0, "classes"])

1

>>>

对两个列进行去重

>>> df

classes name price

0 1 a 11

1 1 a 22

2 3 b 33

3 4 b 44

>>> df.drop_duplicates(subset=['classes', 'name'], inplace=True)

>>> df

classes name price

0 1 a 11

2 3 b 33

3 4 b 44

多个条件分割字符串

>>> fund_memeber = '赵四、 王五'

>>> fund_manager_list = re.split('[;, 、]', fund_memeber)

>>> fund_manager_list

['赵四', '', '王五']

#DataFrame构造器

>>> df = DataFrame({'x':[1],'y':[2]})

>>> df

x y

0 1 2

>>>

删除某列值为特定值得那一行

>>> df = DataFrame({'name':['a','b','c','d'],'classes':[1,2,3,4],'price':[11,22,33,44]})

>>> df

classes name price

0 1 a 11

1 2 b 22

2 3 c 33

3 4 d 44

【方法一】

>>> df = df.loc[df['name']!='a']

>>> df

classes name price

1 2 b 22

2 3 c 33

3 4 d 44

>>>

【方法二】

df.drop(df[df.name=='a'].index,axis=0)

#筛选df的每列值包含某个字段‘/a'

>>> import pandas as pd

>>> df = pd.DataFrame({'a':['A', 'B'], 'b': ['AA', 'BB']})

>>> df

a b

0 A AA

1 B BB

>>> df[df['a'].str.contains(r'A')]

a b

0 A AA

>>> df = pd.DataFrame({'a':['/api/', 'B'], 'b': ['AA', 'BB']})

>>> df

a b

0 /api/ AA

1 B BB

>>> df[df['a'].str.contains(r'/api/')]

a b

0 /api/ AA

>>>

把列变成index和把index变成列

df

request_url visit_times

9 fofeasy_产品基本信息 7

8 投顾挖掘 6

5 投顾挖掘 5

6 投顾挖掘 5

7 fofeasy_产品基本信息 5

3 fofeasy_产品基本信息 4

4 fofeasy_产品基本信息 4

2 投顾挖掘 2

0 行业数据——其他 1

1 行业数据——其他 1

x = df.set_index('request_url')

x

visit_times

request_url

fofeasy_产品基本信息 7

投顾挖掘 6

投顾挖掘 5

投顾挖掘 5

fofeasy_产品基本信息 5

fofeasy_产品基本信息 4

fofeasy_产品基本信息 4

投顾挖掘 2

行业数据——其他 1

行业数据——其他 1

x.reset_index('request_url')

request_url visit_times

0 fofeasy_产品基本信息 7

1 投顾挖掘 6

2 投顾挖掘 5

3 投顾挖掘 5

4 fofeasy_产品基本信息 5

5 fofeasy_产品基本信息 4

6 fofeasy_产品基本信息 4

7 投顾挖掘 2

8 行业数据——其他 1

9 行业数据——其他 1

pandas 按照列A分组,将同一组的列B求和,生成新的Dataframe

>>>df.groupby(by=['request_url'])['visit_times'].sum()

>>>

request_url

fofeasy_产品基本信息 20

投顾挖掘 18

行业数据——其他 2

Name: visit_times, dtype: int64

dict变成dataframe

In [15]: dict = pd.DataFrame({'x':1, 'y':2}, index=[0])

In [16]: dict

Out[16]:

x y

0 1 2

iloc

In [69]: df1.iloc[1:5, 2:4]

Out[69]:

4 6

2 0.301624 -2.179861

4 1.462696 -1.743161

6 1.314232 0.690579

8 0.014871 3.357427

以上这篇dataframe设置两个条件取值的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值