创建Numpy数组的不同方式
Numpy库的核心是数组对象或ndarray对象(n维数组)。你将使用Numpy数组执行逻辑,统计和傅里叶变换等运算。作为使用Numpy的一部分,你要做的第一件事就是创建Numpy数组。本指南的主要目的是帮助数据科学爱好者了解可用于创建Numpy数组的不同方式。
创建Numpy数组有三种不同的方法:
使用Numpy内部功能函数
从列表等其他Python的结构进行转换
使用特殊的库函数
使用Numpy内部功能函数
Numpy具有用于创建数组的内置函数。 我们将在本指南中介绍其中一些内容。
创建一个一维的数组
首先,让我们创建一维数组或rank为1的数组。arange是一种广泛使用的函数,用于快速创建数组。将值20传递给arange函数会创建一个值范围为0到19的数组。
import Numpy as np
array = np.arange(20)
array
输出:
array([0, 1, 2, 3, 4,
5, 6, 7, 8, 9,
10, 11, 12, 13, 14,
15, 16, 17, 18, 19])
要验证此数组的维度,请使用shape属性。
array.shape
输出:
(20,)
由于逗号后面没有值,因此这是一维数组。 要访问此数组中的值,请指定非负索引。 与其他编程语言一样,索引从零开始。 因此,要访问数组中的第四个元素,请使用索引3。
array[3]
输出:
3
Numpy的数