opencv生成3d模型_Python+OpenCV图像风格迁移的实现方法讲解

本文介绍了如何使用Python和OpenCV实现图像风格迁移,基于ECCV 2016论文的网络模型,利用预训练的神经网络将照片转化为艺术风格。OpenCV 3.3版本引入DNN模块,支持多种深度学习框架的模型,使得即使初学者也能轻松体验图像风格迁移的效果。文章提供了简化版的核心代码,并提到实时图像风格迁移在未来的广泛应用潜力。
摘要由CSDN通过智能技术生成

本篇文章给大家带来的内容是关于Python+OpenCV图像风格迁移的实现方法讲解,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

现在很多人都喜欢拍照(自拍)。有限的滤镜和装饰玩多了也会腻,所以就有 APP 提供了 模仿名画风格 的功能,比如 prisma、versa 等,可以把你的照片变成 梵高、毕加索、蒙克 等大师的风格。

6c9d1da5db3c9c3c843fa14b6e943a9b.png

这种功能叫做“ 图像风格迁移 ”,几乎都是基于 CVPR 2015 的论文《 A Neural Algorithm of Artistic Style 》和 ECCV 2016 的论文《 Perceptual Losses for Real-Time Style Transfer and Super-Resolution 》中提出的算法,以及后续相关研究的基础上开发出来的。

通俗来讲,就是借助于 神经网络 ,预先将名画中的风格训练成出模型,在将其应用在不同的照片上,生成新的风格化图像。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值