python实现AI写歌词GUI版本【文末源码】 界面中我们的布局是文本框、编辑框和按钮控件。程序的调用使用批处理文件调用以达到显示运行过程的效果。因为如果没有运行过程,难免会导致用户不清楚程序流程而强制运行容易导致卡死的情况。
python-Vision Transformer实现行为分类和模型类激活图CAM绘制【源码分享】 【代码】python-Vision Transformer实现行为分类和模型类激活图CAM绘制【源码分享】
python+Opencv毕设项目车道检测【源码分享】 (1)、环境概述:系统所使用的环境是python3.6.5,opencv3.14.8版本,windows10系统。编程工具使用的是pycharm专业版。所用到的python其他库有os,在这里用来寻找本地图片文件等操作;numpy库用来当对读取到的图片矩阵进行运算处理;pyqt5库用来创建GUI窗口程序等。(2)、功能模块划分:按照第二章所描述的,所划分的模块总的可以分为图像处理模式识别模块和GUI窗口程序两个部分。其中每个部分又可以分为好几个部分,具体已经在第二章有所阐述。
算法知识点-线性回归、岭回归 线性回归是假设数据是服从正态分布,通过均方误差来计算损失,其本质是最小二乘法。自变量和因变量满足线性关系假设;误差的方差为常数假设;数据服从正态分布假设;自变量相互独立假设;
算法知识点-逻辑回归 定义:假设数据服从伯努利分布,通过极大似然估计来预测数据,然后通过使用梯度下降算法来优化参数的算法。其对于多分类问题上使用交叉熵损失函数,本质是极大似然估计;二分类问题上使用sigmoid函数。
算法知识点-SVM X作为原点到超平面上任意点的连线向量,它的模作为其点到面的距离。1、将求解参数问题转换为求解对偶问题,就是将求解W和B的问题转换为求解核函数和B的问题,这样通过新的目标函数拉格朗日函数可以更快求解;2、其次,原始求解问题复杂度与样本的维度有关,而引入了拉格朗日函数算法复杂度只与样本数量有关,即拉格朗日算子数。γ越小,则考虑全部样本点,难以捕捉超平面的形状;当模型低偏差,高方差的时候,模型过拟合,需要减小C值,因为C值的作用相当于时反正则项。当模型高偏差,低方差时,模型欠拟合,需要增大C值。
算法知识点-AdaBoost 因为在训练每个基分类器时,当某个样本易分辨错误,则增大其权重,这样下一次训练时,为了提高模型效果,就会把权重大的样本识别正确,这样即使每个分类器都可能分类错误,但是可以保证权重大的样本分类正确。首先初始化AdaBoost样本权重分布;然后查找到错误率最小的基分类器;接着计算所有基分类器的权重;然后更新每个样本权重;最后将每个基分类器组合构成强分类器。为什么AdaBoost可以快速收敛?简述AdaBoost权重更新方法?但是对于异常样本敏感。
算法知识点-GBDT GBDT是以CART为基分类器的加法结构树模型,其每个基分类器的输入由上一个分类器的残差作为输入,通过不断减少残差达到训练的目的。其中残差由损失函数的负梯度在当前模型的值进行估算。对特征进行预排序,并存储为block结构,可以对特征进行重复利用,并利用多线程快速查找,加速查找特征。GBDT相对于逻辑回归具有树模型的优点,也就是抗噪声能力强,对异常点不敏感,鲁棒性强;通过计算当前特征的基尼指数与所有特征的比例作为权重。同时GBDT对于缺失值有很好的处理方法,而LR没有。中间节点保存特征分割的阈值;